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Introduction - Why Forest Observation?

Observe clear-felling (ALOS PALSAR, Multitemporal Composite, Siberia)
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Introduction - Why Forest Observation?

Observe damage by forest fires (mid-August 2010, fires close to Moscow)
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Forest fire scar – mind the shadows from remaining stems
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Forest fire scar (3 years old)
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Forest fire scar (3 years old)
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Wind damage area
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Fernerkundung und Kartographie

The wood stack on the photo contains approx. 1.000.000 m3. It is 60 m wide, 16 m high, and 
more than 2 km long. The storm “Gudrun”, which hit southern Sweden in January 2005 fell approx. 
75.000.000 m3, which is almost the annual cut in Sweden.
Photo: Ola Nilsson
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What is biomass and why do we need accurate estimates of the (global) biomass?
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• Stem Biomass is strongly related to the commercially interesting biomass.

• The major part of forest biomass is concentrated in the major trees. The contribution of 
minor trees (and hidden biomass) to total biomass is rather low

• Characterizing biomass using tree height will cover 75-95% of the vegetated earth and 
could directly characterize 80-90% of the aboveground biomass stock

Above-ground   

(approx. 80%)

Below-ground

i.e. roots (ca. 20 %)

Stem (> 90%)

Branches (< 10 %)
Leaves (2-4 %)

Undergrowth (?)Phytomass (>90%)

Zoomass (<10 %)

[After Mette et al., 2002]

Introduction - Main components of biomass distribution
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DID YOU KNOW?

• Forests cover approximately 33% of the Earth’s land surface
(JENSEN, 2000)

• Forests play an important role in the global carbon cycle, since each year forests
absorb approximately 1/12 of the Earth’s atmospheric CO2 stock (MALHI et al.,
2002)

• Forested ecosystems account for app. 72% of the Earth’s terrestrial carbon storage
(MALHI et al., 2002)

• Therefore, Vegetation biomass is a larger global store of carbon than the
atmosphere (FAO, 2009)

• Between 1850 and 2011, humans have released app. 480 Gt (480 BILLION TONS!!!)
of CO2 into the atmosphere through fossil fuel burning and land use changes (e.g.
deforestation and fires) (GHASEMI et al., 2011)
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Forest Biomass

In Forestry, the biomass calculation is based on measurements of trunk diameter
and height of sample populations of trees:

𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑓𝑜𝑟𝑒𝑠𝑡 = 𝑁 × 𝜋 ×
1

2
dbhmid

2

× ℎ𝑚𝑖𝑑 × 𝜌 × 𝑓𝑧

Biomassforest [t/ha] is defined as aboveground woody of trunk and branches where 
exceeding 7 cm diameter

𝐝𝐛𝐡𝐦𝐢𝐝 [cm] is the (dbh² weighted) mean diameter at breast height 1.3 m

𝒉𝒎𝒊𝒅 [m] is the height of the tree

𝝆 [g/cm³] is the species-specific wood density

𝒇𝒛 [] is a form factor (= 0.4-0.5, constant in a first order approximation)

𝑵 is the tree density (tree number per area unit)

The product of 𝑵 × 𝝅 ×
𝟏

𝟐
𝐝𝐛𝐡𝒎𝒊𝒅

𝟐

is also called basal area g.
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WHY DO WE NEED TO OBSERVE (GLOBAL) FOREST BIOMASS?

• For a better understanding and quantification of:

• the global carbon cycle
• global warming
• terrestrial carbon stocks and fluxes in forests
• terrestrial carbon sources and sinks

• Information of forest biomass is needed to support sustainable
forest resource management
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Outline
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1. Backscatter analysis (wavelength, polarisation, incidence 
angle, number of images)

2. Interferometry: Coherence analysis (wavelength, polarisation, 
incidence angle, temporal and spatial baseline, number of 
images, acquisition conditions)

3. Interferometry: Phase analysis (wavelength, incidence angle, 
high coherence required, acquisition conditions)

4. Polarimetry (wavelength, incidence angle, number of images)

5. Polarimetric Interferometry (wavelength, polarisation, 
incidence angle, temporal and spatial baseline)

6. SAR (Polarimetric) Tomography (wavelength, polarisation, 
incidence angle, spatial baseline, high coherence required, 
number of images)

SAR Techniques 
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Stem volume vs. backscatter (HV)
(05aug2007) – 12.5 m data

Correlation between SAR data and stem volume

SAR Techniques: Backscatter analysis 
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The Phase is essential for Interferometry and Polarimetry

• Both techniques require at least two complex SAR images

A) Same polarisation – different 
position

B) Same position – different polarisation 

1 2

Interferometry Polarimetry

E

E

1 2

SAR Techniques: Interferometry vs. Polarimetry
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Coherence and INSAR phase contain information on forest

• Interferometric Coherence – correlation of two complex SAR images

SAR Techniques: Interferometry

Is reduced by

• Temporal decorrelation
• Geometric decorrelation
• Atmosphere
• Noise

Stem volume vs. Coherence
(05feb2008-22mar2008) – 12.5 m data
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Interferometric Coherence for Image Interpretation

Backscatter
image

Flevoland, NL

coherence

ERS-1/2 © ESA

ERS-1/2 © ESA

ERS-1/2 © ESA
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Fig. 33: Temporal Change of the surface (PALLAN o. J.:o. S.).

SAR Techniques: Interferometric Coherence
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Strozzi, T., InSAR Sommerschule 2002

SAR Techniques: Interferometric Coherence

ERS tandem

(1 day)

ERS 

long-term

(35 days)
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Coherence and INSAR phase contain information on forest

• Interferometric Phase

SAR Techniques: Interferometry
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Coherence and INSAR phase contain information on forest

• Interferometric Phase

SAR Techniques: Interferometry
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A complex SAR image can be decomposed into … 

Amplitude Phaseand

© DLR © DLR
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Phase Difference of Two SAR Images

Phase in one SAR  image looks random
(speckle effect!). 
Only after accurate co-registraton the
phase difference reveals the interferogram.
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Phase Difference of Two SAR Images

Phase in one SAR  image looks random
(speckle effect!). 
Only after accurate co-registraton the
phase difference reveals the interferogram.

© DLR
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• Phase is always ambiguous w.r.t. integer multiples of 2π

•  phase unwrapping required!

• pictorial representation of phase:
– grey value                            – color wheel

Phase Representation
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Interferometric phase

Cotopaxi volcano

Ecuador

(SRTM/X-SAR)
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Interferometric Sensitivity as a Function of Wavelength

X-band

C-band

L-band

Mt. Etna
data: SRL-2SRL-2 © DLR
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Dual-Pass vs. Single-Pass interferometry
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Interferometric Phase Error Sources

m5

m25

SAR resolution element (e.g. ERS)

interferogram

InSAR
processor

receiver noise

spatial
& temporal

decorrelation

propagation
effects

processor errors

Note: only random errors (pixel to 
pixel) lead to decorrelation, but not 
systematic errors (spatially correlated)

Fig. 1: © DLR
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28,0 5,0 65,0 82,0

[MFFU Sommerschule 2000]

Coherence and InSAR phase 
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Forest Height based on EO Data

LIDAR first return 
from forest canopy

LIDAR last return 
from forest floor

P-band return from 
forest floor

(WOODHOUSE; Data from SASSAN SAATCHI, JPL).
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1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS

(WOODHOUSE)

Forest Height based on EO Data
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1. Backscatter analysis (wavelength, polarisation, incidence 
angle, number of images)

2. Interferometry: Coherence analysis (wavelength, polarisation, 
incidence angle, temporal and spatial baseline, number of 
images, acquisition conditions)

3. Interferometry: Phase analysis (wavelength, incidence angle, 
high coherence required, acquisition conditions)

4. Polarimetry (wavelength, incidence angle, number of images)

5. Polarimetric Interferometry (wavelength, polarisation, 
incidence angle, temporal and spatial baseline)

6. SAR (Polarimetric) Tomography (wavelength, polarisation, 
incidence angle, spatial baseline, high coherence required, 
number of images)

SAR Techniques 
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The Phase is essential for Interferometry and Polarimetry

• Both techniques require at least two complex SAR images

A) Same polarisation – different 
position

B) Same position – different polarisation 

1 2

Interferometry Polarimetry

SAR Techniques: Interferometry vs. Polarimetry
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Geo-/Biophysical 
Parameters

Motivation for Radar Polarimetry in Remote Sensing

Polarimetric Radar 
Parameters

Modeling
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From Linear to Circular polarized EM Waves…

For all vector waves polarisation refers to the behaviour in time of the
[electric] wave field vector … observed at a fixed point in space. 

(Azzam & Bashara, 1977)
Electric field vector e forms an ellipse with time

http://www.wikipedia.org

e
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Azimuth

AirSAR  / Test Site: San Francisco

Scattering 
Images
L-band

VH VV

HH HV

AIRSAR

©PolSARpro/
NASA

©PolSARpro/
NASA

©PolSARpro/
NASA

©PolSARpro/
NASA

©PolSARpro/NASA
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Decomposition Theorems
[S]

Coherent Decomposition

W. Pauli
(1900-1958)

E. Krogager
(1990)

W.L. Cameron
(1990)

[K]

Target Dichtonomy

J.R. Huynen
(1970)

R.M. Barnes
(1988)

[C] [T]

Eigen-based
Decomposition

Model-based
Decomposition

Eigen-based/Model-based
Decomposition

S.R. Cloude
(1985)

W.A. Holm
(1988)

Eigenvectors/Eigenvalues Analysis
Entropy/Anisotropy

S.R. Cloude & E. Pottier
(1996-1997)

J.J. van Zyl
(1992)

A. Freeman
(1992)
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VVHH SSa   5.02 VVHH SSb   5.02 VHHV SSc   5.02  VHHV SSid   5.02

Single or
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rotated by /4

Transformation 
in orthogonal 

polarisation state
(only in bistatic)
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• Investigation backscatter at different polarisations
• Computation of polarimetric parameters

SAR Techniques: Polarimetry

SHH + SVV Surface Scattering

SHH – SVV Double Bounce

2SHV Volume Scattering

Pauli – Decomposition
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RGB-Composite of Polarisations to Identify Different Scatterers

Polarimetric TerraSAR-X
Pauli RGB Image

Aerial 
Image

 Google maps ©DLR-HR

Rivers 

Cities 

Forests
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RadarSAT-2 – Fine Quad Pol Mode – San Francisco

47

©MDA/CSA
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SAR Techniques: Polarimetric Interferometry 
• Height localisation of different scattering mechanism
• Requires coherent interferometric pair of polarimetric data

A) Same polarisation – different 
position

B) Same position – different polarisation 

1 2

Interferometry Polarimetry

+
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Airfield Oberpfaffenhofen
L-Band pol. InSAR result
----
Tree height

Tree height from POLINSAR

Konstantinos Papathanassiou et al. (DLR) 
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Tree height from POLINSAR

Konstantinos Papathanassiou et al. (DLR) 
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SAR Techniques: (Polarimetric) SAR Tomography 
• Horizontal information on backscatter intensity (and backscattering mechanism)
• Requires many coherent interferometric SAR images

A) Same polarisation – many 
different positions

B) Same position – different polarisation 

1 2

Interferometry Polarimetry

+
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SAR Polarimetric Tomography

Andreas Reigber - Dissertation
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SAR Polarimetric Tomography

Andreas Reigber - Dissertation
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SAR Polarimetric Tomography

Andreas Reigber - Dissertation
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SAR Polarimetric Tomography

Andreas Reigber - Dissertation
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Outline
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Possible Scattering in Forest
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C-band radar backscatter is more sensitive to structural properties of the forest if

1) the radar wave penetrates deeper into the canopy (e.g. frozen or dry conditions) and

2) if the backscatter from the ground is not strong (frozen or dry conditions, smooth soil)

C-band ( 5 cm)L-band ( 23 cm)P-band ( 30-100 cm)

Radar scattering from (boreal) forests
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LE TOAN et al. 2001: 4

Impact of different frequencies 
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Main Scatterers at different frequencies 

LE TOAN
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• AIRSAR  (NASA/JPL) 
polarimetric C-, L- and P-Band 
with Incidence Angles of 40°
and 50°

(mono-temporal acquisitions)

IMHOFF 1995: 514
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• AIRSAR  (NASA/JPL) 
polarimetric C-, L- and P-Band 
with Incidence Angles of 40°
and 50°

(mono-temporal acquisitions)

P-band HV 
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SATURATION PROBLEM

The saturation level of different wavelengths and polarizations depends on:

• wavelength (i.e. different bands, such as C, L, P)

• polarization (HV, HH and VV)

• object characteristics (vegetation stand structure and ground conditions)



ESA PECS SAR Remote Sensing Course, Mai/June 2016, Sofia 65

ERS Tandem Coherence

RMSE: 10 m3/ha

Relative RMSE: 7 %

JERS Backscatter

RMSE: 33 m3/ha, 

Relative RMSE: 22 %

Santoro et al., RSE, 2002

Strength of multitemporal data
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Forest at different frequencies 

C-Band L-Band
• Medium dynamic range
• Stable response to water
• Possible to identify 

agricultural fields
• Higher frame to frame 

variations

• Small dynamic range
• Variable response to water
• Variable response to open 

areas
• Can be used as indicator of 

environmental effects 
effecting the coherence 
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• Higher contrast between 
forest/non forest

• Higher sensitivity to forest 
volume

• Confusion between water 
and dense forest

• Frame to frame variations 

Forest at different frequencies

• Medium dynamic range
• Stable response to water
• Possible to identify 

agricultural fields
• Higher frame to frame 

variations

• Small dynamic range
• Variable response to water
• Variable response to open 

areas
• Can be used as indicator of 

environmental effects 
effecting the coherence 

C-Band L-Band Coherence
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Model

SAR measures Forest Parameters

forward

inversion

forward

inversion

Linking SAR measures and Forest Parameters
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Outline
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Wave VV or HH
< 10m resolution 

5 x 5 km to 10 x 5 
km vignettes

Image VV or HH
< 30m resolution

up to 100 km swath

Alternating Polarisation
VV/HH or VV/VH or 

HH/HV
30m resolution

up to 100 km swath
Wide Swath

VV or HH
150m resolution
405 km swath 

width

Global Monitoring
VV or HH

1000m resolution
405 km swath 

width

ENVISAT ASAR Modes – BIOMASAR uses WS & GM
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Wide Swath Mode 2007

Global Monitoring Mode 2007 

Envisat ASAR Scansar data availability 
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During 2003 and 2004 ENVISAT ASAR data in Wide Swath mode has been acquired over the study area of 
the SIBERIA-II Project; Several hundred ASAR scenes have been acquired, with a high degree of overlap 
between neighboring tracks 

The point was imaged 97 times during 
2003-2004

ENVISAT ASAR Wide Swath dataset
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BIOMASAR: ENVISAT ASAR Global Mode
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Water cloud with gaps

A water cloud with gaps is close to reality and easy to handle

Modeling Example: A Water Cloud-like model
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Water cloud with gaps

A water cloud with gaps is close to reality and easy to handle

   tree
o
vegtree

o
gr

o
gr

o
for TT  11 

The model expresses the forest backscatter as function of the area-fill factor , i.e. the forest canopy cover

For applications it can be written in terms of growing stock volume

Canopy cover   tree transmissivity 
(depends on tree height 
and signal attenuation)

Modeling Example: A Water Cloud-like model
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Water cloud with gaps

A water cloud with gaps is close to reality and easy to handle

   tree
o
vegtree

o
gr

o
gr

o
for TT  11 

The model expresses the forest backscatter as function of the area-fill factor , i.e. the forest canopy cover

For applications it can be written in terms of growing stock volume

  Vo
gr

Vo
veg

o
for ee     1

Unknown

Canopy cover   tree transmissivity 
(depends on tree height 
and signal attenuation)

σgr   ground backscatter   
σveg   canopy backscatter
β forest transmissivity coefficient

Modeling Example: A Water Cloud-like model
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• A multi-temporal combination of single estimates with weights determined by the 
backscatter contrast 0

veg - 0
gr allows obtaining the final estimate

Modeling Inversion

Multi-temporal combination of single biomass estimates 

(ESA BIOMASAR Project, Maurizio Santoro, 2007)
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Single-image Multi-temporal 
(29 images) 

Inventory  

• From a single image it is possible to identify sparse/dense forest patterns at most

• From multi-temporal combination it is possible to identify biomass levels

Multi-temporal combination of single biomass estimates 
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Retrieved GSV Map vs. in-situ data 
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• The quality of the reference data can affect the retrieval 
statistics

• Cross-comparison with other EO data helped in bailing out 
extreme cases

• Retrieval statistics at full resolution embed a certain amount 
of error due to imprecision in the ref. data

• More correct results are obtained when aggregating

Impact of uncertainty of in situ data
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WS-based Forest inventory

BIOMASAR Algorithm Based Stock Volume
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m3/ha

m3/ha

• 1 km resolution

• 2,400,000 km2

• ENVISAT ASAR – Global 
Monitoring mode (Jan. 2005 –
Feb. 2006) 

• GLC 2000 land cover used as 
background

BIOMASAR GSV map of 
Central Siberia
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Relative RMSE: 39.6%

Bias: 10.2 m3/ha

r = 0.73

Accuracy for 10 km pixel size
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Relative RMSE: 32.3%

Bias: 9.6 m3/ha

r = 0.80

Accuracy for 25 km pixel size
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Relative RMSE: 25.9%

Bias: 9.3 m3/ha

r = 0.86

Accuracy for 50 km pixel size
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1. Introduction: Why Forest Observation?

2. SAR Techniques of interest for forestry applications

3. SAR for Forestry Applications – Some Basics

4. Forest Cover and Biomass Mapping – Excurses

1. BIOMASAR – Hypertemporal C-band Data Assimilation

2. Forest Cover Mapping Using Backscatter and Coherence

3. Forest Biomass Mapping Using Backscatter and Coherence

4. Polarimetry for Forest Cover Mapping

5. INSAR Phase and Tree Height

6. Seasonality of C-band Backscatter in Siberia

7. Seasonality of Coherence in Siberia

8. X-band coherence over the Thuringian Forest

9. Mapping of woody cover in KNP using L-band backscatter

Outline
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Subsection of ALOS FBS Scene, Summer 2006

Analysis of PALSAR data - FBS
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date mode position

19MAY06 FBS 54°12’N  99°94’E

19MAY06 FBS 55°59’N  99°58’E

19MAY06 FBS 56°08’N  99°46’E

14AUG06 FBS 54°12’N  101°56’E

14AUG06 FBS 54°61’N  101°44’E

27DEC06 FBS 56°84’N  104°16’E

27DEC06 FBS 57°33’N  103°99’E

13JAN07 FBS 56°83’N  103°62’E

13JAN07 FBS 56°83’N  103°62’E

11FEB07 FBS 56°84’N  104°18’E

11FEB07 FBS 57°33’N  104°02’E

28FEB07 FBS 56°84’N  103°64’E

Forest Clear-cut separability
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Class signatures basing on image objects including standard deviation and min/max: 
brown = clear cut (HH), green = forest (HH), X-axis labels test cases 

Forest Clear-cut separability
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date mode position separability: pixel / object

19MAY06 FBS 54°12’N  99°94’E 0.97 1.00

19MAY06 FBS 55°59’N  99°58’E 0.99 1.00

19MAY06 FBS 56°08’N  99°46’E 0.99 1.00

14AUG06 FBS 54°12’N  101°56’E 0.99 1.00

14AUG06 FBS 54°61’N  101°44’E 0.93 1.00

27DEC06 FBS 56°84’N  104°16’E 0.94 1.00

27DEC06 FBS 57°33’N  103°99’E 0.93 1.00

13JAN07 FBS 56°83’N  103°62’E 0.97 1.00

13JAN07 FBS 56°83’N  103°62’E 0.94 1.00

11FEB07 FBS 56°84’N  104°18’E 0.95 1.00

11FEB07 FBS 57°33’N  104°02’E 0.93 1.00

28FEB07 FBS 56°84’N  103°64’E 0.96 1.00

Forest Clear-cut separability
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Subsection of ALOS PLR scene (HH/HV/VV RGB) taken over Siberia in August 2006

Analysis of PALSAR data – PLR
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date mode position

28AUG06 PLR 56°93’N  99°96’E

28AUG06 PLR 57°42’N  99°78’E

14SEP06 PLR 56°44’N  99°63’E

14SEP06 PLR 54°12’N  101°56’E

13OCT06 PLR 57°41’N  99°75’E

17MAR07 PLR 56°45’N  99°67’E

17MAR07 PLR 57°42’N  99°25’E

Analysis of PALSAR data – PLR
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Class signatures basing on image objects including standard deviation and min/max: 
brown = clear cut (HV), green = forest (HV), X-axis labels test cases

Analysis of PALSAR data – PLR
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date mode position separability: pixel/object

28AUG06 PLR 56°93’N  99°96’E

0.50 (HH)
0.88 (HV)
0.53 (VV)

1.00 (HH)
1.00 (HV)
1.00 (VV)

28AUG06 PLR 57°42’N  99°78’E

0.51 (HH)
0.93 (HV)
0.43 (VV)

1.00 (HH)
1.00 (HV)
1.00 (VV)

14SEP06 PLR 56°44’N  99°63’E

0.64 (HH)
0.85 (HV)
0.59 (VV)

0.86 (HH)
1.00 (HV)
0.82 (VV)

14SEP06 PLR 54°12’N  101°56’E

0.75 (HH)
0.94 (HV)
0.75 (VV)

1.00 (HH)
1.00 (HV)
1.00 (VV)

13OCT06 PLR 57°41’N  99°75’E

0.65 (HH)
0.99 (HV)
0.39 (VV)

1.00 (HH)
1.00 (HV)
1.00 (VV)

17MAR07 PLR 56°45’N  99°67’E

0.31 (HH)
0.74 (HV)
0.32 (VV)

0.92 (HH)
1.00 (HV)
0.92 (VV)

17MAR07 PLR 57°42’N  99°25’E

0.27 (HH)
0.71 (HV)
0.24 (VV)

0.83 (HH)
1.00 (HV)
0.81 (VV)

Analysis of PALSAR data – PLR
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Subsection of PALSAR FBS HH winter coherence, RGB= Coh/Int/Ratio Int.

Analysis of PALSAR data – FBS Coherence (Winter)
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date mode position

27DEC06 11FEB07 FBS Coh. 56°84’N  104°16’E

27DEC06 11FEB07 FBS Coh. 57°33’N  103°99’E

13JAN07 28FEB07 FBS Coh. 56°84’N  103°62’E

13JAN07 28FEB07 FBS Coh. 57°33’N  103°45’E

01JAN07 16FEB07 FBS Coh. 56°35’N  102°69’E

01JAN07 16FEB07 FBS Coh. 56°84’N  102°54’E

Analysis of PALSAR data – FBS Coherence (Winter)
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Class signatures basing on image objects including standard deviation and min/max: 
brown = clear cut (coherence), green = forest (coherence), X-axis labels test cases

Analysis of PALSAR data – FBS Coherence (Winter)
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date mode position separability: pixel / object

27DEC06 11FEB07 FBS Coh. 56°84’N  104°16’E 0.99 1.00

27DEC06 11FEB07 FBS Coh. 57°33’N  103°99’E 0.99 1.00

13JAN07 28FEB07 FBS Coh. 56°84’N  103°62’E 0.98 1.00

13JAN07 28FEB07 FBS Coh. 57°33’N  103°45’E 0.98 1.00

01JAN07 16FEB07 FBS Coh. 56°35’N  102°69’E 0.98 1.00

01JAN07 16FEB07 FBS Coh. 56°84’N  102°54’E 0.99 1.00

Analysis of PALSAR data – FBS Coherence (Winter)
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Object based signatures: forest, burnt/clear-cut

• Summer intensity seems slightly better suited than winter intensity

• (Relatively poor separability basing on PLR intensity is owing to the higher noise and
speckle effect and to the reduced resolution

Analysis of PALSAR data – FBS Coherence (Winter)
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HV / HH / Coherence

Value of Coherence
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HV / HH / Coherence

Value of Coherence
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Signature plot for intensities HH (-) and HV (x) Signature plot for interferometric coherence

Power of Coherence
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• This initial investigation was carried out in 
the framework of GSE Forest Monitoring

• Summer intensity and winter coherence 
images are used

• Intensities (FBD HH/HV) have been acquired 
during summer 2007 (K&C intensity stripes)

• For coherence estimation standard level 1.1 
FBS scenes were applied

• 43 pairs have been acquired during winters 
2006/2007 (cycles 8 & 9) and 2007/2008 
(cycles 16 & 17)

• Each pair stems from consecutive cycles (46 
days temporal baseline)

• During both winters suited weather 
conditions have been reported 

Mosaic of interferometric coherence 
images: 53°-58°N, 97°-105°E

Forest Cover Mapping Using Intensity and Coherence
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Test area (light green patch, right 
image) in the centre of the prototype 
area

Composite of HV & HH backscatter and winter coherence for a subset of the 
monitoring area (taken from north-eastern section)

Forest Cover Mapping Using Intensity and Coherence
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• Classification is based on image segments (multiresolution segmentation algorithm)

• Nearest Neighbor algorithm was used

• Defined target classes: forest, very low biomass forest and non-forest

• For each class 20 samples have been selected 

Example of segmented dataset

Forest Cover Mapping Using Intensity and Coherence
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Forest Cover Mapping Using Intensity and Coherence

SAR data (HV/HH/Coherence) Map (forest: green, very low biomass forest: brownish 
green, non-forest: light brown)
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• The accuracy assessment for the whole monitoring area is basing on 1,000 point samples

• The random sampling was stratified by class proportion

• Overall accuracy: 90.87%. 

SAR data (HV/HH/Coherence) Map (forest: green, very low biomass forest: brownish 
green, non-forest: light brown)

Forest Cover Mapping Using Intensity and Coherence
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HH/HV/Coherence

Forest Cover Mapping using Coherence and Backscatter
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Final Map Product of ESA-Project
GSE Forest Monitoring
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Is X-band backscatter useful for forest applications?
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Validation with
TerraSAR-X

Is X-band backscatter useful for forest applications?



ESA PECS SAR Remote Sensing Course, Mai/June 2016, Sofia 114

Validation with
TerraSAR-X

Is X-band backscatter useful for forest applications?
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• Method: Stratified Random Sampling Points
• Reference 25 High Resolution Spotlight TerraSAR-X Data randomly spread 

over the study area
• Minimum of 5 sampling points per class

Producers Accuracy Users Accuracy

[%] [%]

Non Forest 92.6 90.9

Forest 95.1 92.3

Sparse
Forest

92.6 96.6

Is X-band backscatter useful for forest applications?
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1. Introduction: Why Forest Observation?

2. SAR Techniques of interest for forestry applications

3. SAR for Forestry Applications – Some Basics

4. Forest Cover and Biomass Mapping – Excurses

1. BIOMASAR – Hypertemporal C-band Data Assimilation

2. Forest Cover Mapping Using Backscatter and Coherence

3. Forest Biomass Mapping Using Backscatter and Coherence

4. Polarimetry for Forest Cover Mapping

5. INSAR Phase and Tree Height

6. Seasonality of C-band Backscatter in Siberia

7. Seasonality of Coherence in Siberia

8. X-band coherence over the Thuringian Forest

9. Mapping of woody cover in KNP using L-band backscatter

Outline
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Demonstrating the Potential of ALOS PALSAR
Backscatter and INSAR Coherence

for Growing Stock Volume Estimation in Central Siberia

Christian Thiel

Christiane Schmullius
Friedrich-Schiller-University Jena, 

Germany
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Radar backscatter and coherence as function of GSV for the inventory site Hrebtovsky S. The backscatter image (HV) 
polarisation was acquired at unfrozen conditions, while the data for the coherence image was acquired at frozen 

conditions. 

Motivation

Backscatter InSAR Coherence
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• The accuracy assessment for the whole monitoring area is basing on 1,000 point samples

• The random sampling was stratified by class proportion

• Overall accuracy: 90.87%. 

SAR data (HV/HH/Coherence) Map (forest, very low biomass forest, non-forest)

Forest Cover Mapping Using Intensity and Coherence
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Outline

1. Area and test sites

2. PALSAR data

3. Summary of observations

4. Map generation approach

5. Results

6. Conclusions
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Test Site
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Site Characteristics

• Middle Siberian Plateau: southern part is dominated by 
hills up to 1700 m, northern part is plain with heights up to 
500 m

• Continental climate, prec. 400-450 mm/y, most of the 
precipitation occurs in summer

• Territory is characterised by large area changes of forests 
such as forest fire, insect outbreaks, and intensive human 
activities

• Characteristic taiga forests (birch, pine, fir, aspen, larch, 
spruce, cedar) cover about 82% of the region
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Site Characteristics

• Middle Siberian Plateau: southern part is dominated by 
hills up to 1700 m, northern part is plain with heights up to 
500 m

• Continental climate, prec. 400-450 mm/y, most of the 
precipitation occurs in summer

• Territory is characterised by large area changes of forests 
such as forest fire, insect outbreaks, and intensive human 
activities

• Characteristic taiga forests (birch, pine, fir, aspen, larch, 
spruce, cedar) cover about 82% of the region
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SAR data set

• PALSAR L-band (1,27 GHz) data

• 87 acquisitions, mode: FBS  FBD

• Approx. 300 interferograms

• FBS: HH (28 MHz), FBD; HH/HV (14 MHz)

• Repetition rate: 46 days
© JAXA
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Outline

1. Area and test sites

2. PALSAR data

3. Summary of observations

4. Map generation approach

5. Results

6. Conclusions
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Experimental data – Summary 
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Experimental data – Summary 



ESA PECS SAR Remote Sensing Course, Mai/June 2016, Sofia

Outline

1. Area and test sites

2. PALSAR data

3. Summary of observations

4. Map generation approach

5. Results

6. Conclusions
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Delineation of GSV Maps

• Random training data selection (20% of the forest inventory data)

• Training of empirical exponential model

• Pixel based model inversion

• Averaging intermediate GSV maps resulting in one backscatter based and in 
one coherence based GSV map

• Merging coherence and backscatter based GSV map

• Elimination of pixels with a GSV difference > 100 m³/ha (floodplains, 
change, water, urban etc.)

• Setting all negative GSV values to zero

• Assessing accuracy using the remaining 80% of the reference data
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Outline

1. Area and test sites

2. PALSAR data

3. Summary of observations

4. Map generation approach

5. Results

6. Conclusions
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Example for delineation of GSV Map (Hrebtovsky site )

Data:

• 3 coherence images (frozen conditions)

• 6 HV backscatter images (unfrozen conditions)

• R² between coherence and GSV: 0.44 (average)

• R² between backscatter and GSV: 0.48 (average)

• Coherence saturation level: 250 m³/ha (average)

• Backscatter saturation level: 200 m³/ha (average)
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Example for delineation of GSV Map (Hrebtovsky site )
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Example for delineation of GSV Map (Hrebtovsky site )
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Forest stand level based comparison of two SAR data based GSV maps for Hrebtovsky S

Backscatter vs. coherence SAR vs. inventory

Example for delineation of GSV Map (Hrebtovsky site )
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Results for the other sites

Chunsky E Chunsky N Shesta Hrebt S Nishni

R² coh + int 0.79 0.79 0.54 0.57 0.83

R² coh 0.80 0.78 0.37 0.55 0.82

R² int 0.67 0.70 0.56 0.50 0.82

RMSE [m³/ha] coh + int 56.6 41.2 50.4 57.4 48.9

RMSE [m³/ha] coh 56.4 42.4 52.7 61.9 50.7

RMSE [m³/ha] int 71.1 50.3 56.2 59.1 56.1

Rel. RMSE approximately 25% for all sites
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Outline

1. Area and test sites

2. PALSAR data

3. Summary of observations

4. Map generation approach

5. Results

6. Conclusions
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• Coherence at frozen conditions offers the largest potential for GSV estimation

• Saturation at 230 m³/ha, R² between coherence and GSV is 0.58

• Comparable results were found in other studies using ERS-1/2 Tandem data

• Backscatter less sensitive

• Saturation at 75-100 m³/ha, R² between backscatter and GSV 0.42 (HH) - 0.48 (HV)

• Combination of backscatter and coherence led to improvement of GSV estimation, in particular

exclusion of areas with contradictory GSV (coherence vs. backscatter) helpful

• Demonstrated: Potential of ALOS PALSAR to map the GSV of the Siberian forest with a precision close

to the accuracy of the conventional forest inventory data (relative RMSE approx. 25%)

• Data availability: At each region in Siberia in average 4 coherence images (temporal baseline 46 days)

acquired at frozen conditions and 6 FBD backscatter images acquired at unfrozen conditions are

available

Conclusions 
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1. Introduction: Why Forest Observation?

2. SAR Techniques of interest for forestry applications

3. SAR for Forestry Applications – Some Basics

4. Forest Cover and Biomass Mapping – Excurses

1. BIOMASAR – Hypertemporal C-band Data Assimilation

2. Forest Cover Mapping Using Backscatter and Coherence

3. Forest Biomass Mapping Using Backscatter and Coherence

4. Polarimetry for Forest Cover Mapping

5. INSAR Phase and Tree Height

6. Seasonality of C-band Backscatter in Siberia

7. Seasonality of Coherence in Siberia

8. X-band coherence over the Thuringian Forest

9. Mapping of woody cover in KNP using L-band backscatter

Outline
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• Investigation backscatter at different polarisations
• Computation of polarimetric parameters

SAR Techniques: Polarimetry

SHH + SVV Surface Scattering

SHH – SVV Double Bounce

2SHV Volume Scattering

Pauli – Decomposition
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1. Intensities

2. Polarimetric HHVV Coherence

3. Cloude decomposition parameters

4. Freeman decomposition parameters

5. Krogager decomposition parameters

6. Summary of separability measures

Class signature 
analysis

Analysis of Polarimetric Parameters
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(RGB = HH/HV/VV)

Intensities – Overview

• LEFT: Summer conditions 
(28th August 2006)

• RIGHT: Autumn/Early 
winter conditions –
beginning of freezing, 
leaves off 
(13th October 2006)
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• LEFT: Summer conditions 
(28th August 2006)

• RIGHT: Autumn/Early 
winter conditions –
beginning of freezing, 
leaves off 
(13th October 2006)

Intensities – Overview

(RGB = HH/HV/VV)
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Signature plot of HV & HH intensity
1 & 6 = recent clear-cut
2 & 7 = former clear-cut
3 & 8 = fire scar
4 & 9 = forest

Intensities
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• Displayed: Magnitude of HHVV 
Coherence

• Provides information on the 
scattering process

• Surface scattering creates high 
coherence, multiple scattering 
low values

summer winter

HHVV Coh.
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1 & 6 = recent clear-cut
2 & 7 = former clear-cut
3 & 8 = fire scar
4 & 9 = forest

HHVV Coh.
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• Roll invariant Eigenvector-
Eigenvalue based 
decomposition of the 
coherency matrix

• Physical interpretability of 
concluding parameters

• Alpha indicates type of mean 
scattering mechanism

• Entropy and Anisotropy
specify distribution of the 
scattering mechanisms

• Displayed: Entropy

summer winter

Cloude
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1 & 6 = recent clear-cut
2 & 7 = former clear-cut
3 & 8 = fire scar
4 & 9 = forest

Cloude
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• Separates backscattered power 
with a modelled covariance 
matrix into three fractions: 
Volume scattering (Pv), 
double bounce (Pd) and 
surface scattering (Ps)

• Not roll invariant and 
topography can affect the 
fractioning

• Displayed: Pd/ Pv/ Ps

summer winter

Freeman
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Signature plot of Pv (volume scattering)
1 & 6 = recent clear-cut
2 & 7 = former clear-cut
3 & 8 = fire scar
4 & 9 = forest

Freeman
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• Coherent decomposition

• Factorises the scattering matrix 
as combination of three 
responses:  sphere, helix and 
diplane

• Power scattered by each of 
these responses is given by 
|ks|², |kh|² and |kd|²

• Displayed: |kd|² 

summer winter

Krogager
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Signature plot of |kd|² (diplane response)
1 & 6 = recent clear-cut
2 & 7 = former clear-cut
3 & 8 = fire scar
4 & 9 = forest

Krogager
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Summary of separability measures
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1 = recent clear-cut, 2 = former clear-cut
3 = fire scar, 4 = forest

Normalised Jefferies-Matusita distance
(1.0 = signatures separable; 0.0 = signatures inseparable)

Summary of separability measures
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1 = recent clear-cut, 2 = former clear-cut
3 = fire scar, 4 = forest

Normalised Jefferies-Matusita distance
(1.0 = signatures separable; 0.0 = signatures inseparable)

Summary of separability measures
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1. Introduction: Why Forest Observation?

2. SAR Techniques of interest for forestry applications

3. SAR for Forestry Applications – Some Basics

4. Forest Cover and Biomass Mapping – Excurses

1. BIOMASAR – Hypertemporal C-band Data Assimilation

2. Forest Cover Mapping Using Backscatter and Coherence

3. Forest Biomass Mapping Using Backscatter and Coherence

4. Polarimetry for Forest Cover Mapping

5. INSAR Phase and Tree Height

6. Seasonality of C-band Backscatter in Siberia

7. Seasonality of Coherence in Siberia

8. X-band coherence over the Thuringian Forest

9. Mapping of woody cover in KNP using L-band backscatter

Outline
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Vegetation height estimation from SRTM 
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X-SAR Real-time Downlink for
SRTM Mission,
DLR-DFD overnight processing,
February 2000
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Specifications of INSAR-DHM

Geometric Resolution: 5 x 5 m
Height Accuracy: 1 m

X-Band

1. DHM contains height of buildings and trees

2. Errors were backscatter is little
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Vegetation height estimation from E-SAR Data



ESA PECS SAR Remote Sensing Course, Mai/June 2016, Sofia 163

y = 1,0x - 1,9

R2= 1,0

0

5

10

15

20

0 5 10 15 20 25

Geländemessungen [m]

B
äu

m
h

ö
h

en
 E

-S
A

R
 D

E
M

 [
m

]

Validation with in-situ data

Vegetation (and building) height estimation from E-SAR Data
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Andreas R. Brenner and Ludwig Roessing, Radar Imaging of Urban Areas by Means of Very High-Resolution SAR and Interferometric SAR, IEEE TRANSACTIONS ON GEOSCIENCE AND 
REMOTE SENSING, VOL. 46, NO. 10, OCTOBER 2008

Trees acquired at superhigh resolution (X-band)



ESA PECS SAR Remote Sensing Course, Mai/June 2016, Sofia 165

Trees acquired at superhigh resolution (X-band)

Andreas R. Brenner and Ludwig Roessing, Radar Imaging of Urban Areas by Means of Very High-Resolution SAR and Interferometric SAR, IEEE TRANSACTIONS 
ON GEOSCIENCE AND REMOTE SENSING, VOL. 46, NO. 10, OCTOBER 2008
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Double Bounce

Volume Scattering

Forest Edge in L-Band

Trees acquired at high resolution (L-band)
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1. Introduction: Why Forest Observation?

2. SAR Techniques of interest for forestry applications

3. SAR for Forestry Applications – Some Basics

4. Forest Cover and Biomass Mapping – Excurses

1. BIOMASAR – Hypertemporal C-band Data Assimilation

2. Forest Cover Mapping Using Backscatter and Coherence

3. Forest Biomass Mapping Using Backscatter and Coherence

4. Polarimetry for Forest Cover Mapping

5. INSAR Phase and Tree Height

6. Seasonality of C-band Backscatter in Siberia

7. Seasonality of Coherence in Siberia

8. X-band coherence over the Thuringian Forest

9. Mapping of woody cover in KNP using L-band backscatter

Outline
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Seasonal behaviour of C-Band Backscatter in Siberian Forests
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Climate data for year 2006

Weekly averages for Tmax and snow depth, weekly sum for precipitation

Tulun (100,5°E / 54,5°N, altitude 522 m) Vitim (103,1°E / 56,3°N, altitude 190 m)
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West East

February - 14.02.2006

March 05.03.2006 21.03.2006

April - 25.04.2006

May 14.05.2006 -

June 18.06.2006 -

July 23.07.2006 04.07.2006

August 27.08.2006 -

September - 12.09.2006

October - -

November 05.11.2006 21.11.2006

Data available for time series:

- = no acquisition 

March data depicted (RGB = HH-HV-HV) 

ASAR Data: APP (HH/HV) I7
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East

14.02.2006

21.03.2006

25.04.2006

-

-

04.07.2006

-

12.09.2006

-

21.11.2006

35 km

23 km

(RGB = HH-HV-HV) 

Seasonal behaviour of C-Band Backscatter in Siberian Forests
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Seasonal behaviour of C-Band Backscatter in Siberian Forests
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Seasonal behaviour of C-Band Backscatter in Siberian Forests
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Seasonal behaviour of C-Band Backscatter in Siberian Forests
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Seasonal behaviour of C-Band Backscatter in Siberian Forests
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Seasonal behaviour of C-Band Backscatter in Siberian Forests
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Seasonal behaviour of C-Band Backscatter in Siberian Forests
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Seasonal behaviour of C-Band Backscatter in Siberian Forests
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Seasonal behaviour of C-Band Backscatter in Siberian Forests
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Seasonal behaviour of C-Band Backscatter in Siberian Forests
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Seasonal behaviour of C-Band Backscatter in Siberian Forests
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Seasonal behaviour of C-Band Backscatter in Siberian Forests
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Eastern & Western 
Scene – combined 
signature plot:

Mean backscatter for 
forest and non-forest 
(signatures merged from 
previous 3 forest and 2 
non-forest classes)

Bars denote min and 
max respectively
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Eastern & Western Scene: 
Normalised Jefferies-Matusita 
distances

Separability analysis performed 
on pixel level

1.0 = signatures separable
0.0 = signatures inseparable

Mean separability for forest and 
non-forest (signatures merged 
from previous 3 forest and 2 
non-forest classes)

Best overall separability: 25th 
April

burnt/clear-cut 
vs. forest

14.02.2006 0,38

05.03.2006 0,49

21.03.2006 0,34

25.04.2006 0,78

14.05.2006 0,23

18.06.2006 0,11

04.07.2006 0,36

23.07.2006 0,24

27.08.2006 0,11

12.09.2006 0,46

05.11.2006 0,38

21.11.2006 0,27

Separability analysis 
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• High separability of forest/non-forest at late April / early May 
is also evident for other scenes (were no complete time 
series was available) – next slide

• Where available, late April / early May scenes were utilised 
for map production, if not available less suited acquisition 
dates had to be applied

Separability analysis 
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Daily values

Tulun (100,5°E / 54,5°N, altitude 522 m) Vitim (103,1°E / 56,3°N, altitude 190 m)

Weather and snow conditions in late April
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Ground

Absorption

Forward Surface 
Scattering

Moist Snow Layer

Canopy 
Scattering

Canopy
Unfrozen

C-band scattering processes in late April
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1. Introduction: Why Forest Observation?

2. SAR Techniques of interest for forestry applications

3. SAR for Forestry Applications – Some Basics

4. Forest Cover and Biomass Mapping – Excurses

1. BIOMASAR – Hypertemporal C-band Data Assimilation

2. Forest Cover Mapping Using Backscatter and Coherence

3. Forest Biomass Mapping Using Backscatter and Coherence

4. Polarimetry for Forest Cover Mapping

5. INSAR Phase and Tree Height

6. Seasonality of C-band Backscatter in Siberia

7. Seasonality of Coherence in Siberia

8. X-band coherence over the Thuringian Forest

9. Mapping of woody cover in KNP using L-band backscatter

Outline
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Background

The boreal zone (in particular Siberia) is characterised by unique environmental conditions

Winter:
• Trees are frozen, almost transparent, backscatter significantly reduced, environmental 

conditions are very stable
• Snow hardly impacts the scattering 
• Soil is also frozen, changes in soil moisture do not appear
• Very low temporal decorrelation, great potential for forest biomass estimation

Thawing “season”:

• Wet snow cover
• High level of heterogeneity in space and time (snow cover, moisture, state of forest)
• Most unsuitable time

Summer:
• Temporal decorrelation (rainfall, changing soil moisture and interception water, wind)
• Repeat pass coherence for forest is assumed being in general much smaller compared to 

mid-winter
• However, not much is known about L-band mid-summer coherence (some work by Eriksson)
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Site Characteristics

• Central Siberia in Russia (Irkutsk Oblast, Krasnoyarsk Kray)

• Middle Siberian Plateau: southern part is dominated by hills up to 1700 m, northern 
part is plain with heights up to 500 m

• Characteristic taiga forests (spruce, birch, larch, pine, aspen etc.) cover about 82% of 
the region

• Territory is characterised by large area changes of forests such as forest fire, and 
intensive human activities

• Continental climate, prec. ca. 400-450 mm/y
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Methodology of Investigation – Overview

1. Generation of subsets from original frames covering forest inventory data

2. Computation of mean coherence per forest stand – new entity: forest stand

3. Computation of various statistical parameters

4. Fit of empirical exponential model (compare Askne & Santoro, 2005)

5. Creation of plots: stem volume vs. coherence

6. Check of perpendicular baseline  rejection of coherence data with baseline > ½ of 
critical baseline

7. Check of weather conditions


















c

vol

c

vol

vol ebae 1
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PALSAR Data
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Coherence Images – Examples Chunsky N – Winter-Winter (Temporal Baseline 46 d)

21dec07_05feb0805nov07_21dec07 05feb08_22mar08

0

1

no stretching applied on im
age data
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Coherence Images – Examples Chunsky N – Winter-Winter (Temporal Baseline 46 d)

21dec07_05feb0805nov07_21dec07 05feb08_22mar08

0

1

no stretching applied on im
age data
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Coherence Images – Examples Chunsky N – Winter-Summer

05nov07_20jun0705feb08_20jun07 22mar08_20sep07

0

1

no stretching applied on im
age data
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Coherence Images – Examples Chunsky N – Winter-Summer

05nov07_20jun0705feb08_20jun07 22mar08_20sep07

0

1

no stretching applied on im
age data
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Coherence Images – Examples Chunsky N – Summer-Summer (Temp. Baseline 46 d)

05aug07_20sep0720jun07_05aug07 22jun08_07aug08

0

1

no stretching applied on im
age data

B: 4,060 m (Bc: ~ 6,500 m)
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Coherence Images – Examples Chunsky N – Summer-Summer (Temp. Baseline 46 d)

05aug07_20sep0720jun07_05aug07 22jun08_07aug08

0

1

no stretching applied on im
age data

B: 4,060 m (Bc: ~ 6,500 m)
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Scatter Plots – Representative Examples: Observed impact of GSV on |γ|
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Impact of B on |γ| (unfrozen conditions)



ESA PECS SAR Remote Sensing Course, Mai/June 2016, Sofia 201

Impact of B on |γ| (frozen conditions)
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Summary of all PALSAR Observations
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1. Introduction: Why Forest Observation?

2. SAR Techniques of interest for forestry applications

3. SAR for Forestry Applications – Some Basics

4. Forest Cover and Biomass Mapping – Excurses

1. BIOMASAR – Hypertemporal C-band Data Assimilation

2. Forest Cover Mapping Using Backscatter and Coherence

3. Forest Biomass Mapping Using Backscatter and Coherence

4. Polarimetry for Forest Cover Mapping

5. INSAR Phase and Tree Height

6. Seasonality of C-band Backscatter in Siberia

7. Seasonality of Coherence in Siberia

8. X-band coherence over the Thuringian Forest

9. Mapping of woody cover in KNP using L-band backscatter

Outline
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Nicolas Ackermann 

X-band coherence over the Thuringian 
Forest
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 Context:
 The monitoring of forested areas represents a great challenge in the context of 

the actual climate change and the development of the wood industry activities.
 Cosmo-SkyMed, with a constellation of 4 satellites, constitutes a promising 

instruments for the retrieval of forest biophysical parameters.

Introduction
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 Context:
 The monitoring of forested areas represents a great challenge in the context of 

the actual climate change and the development of the wood industry activities.
 Cosmo-SkyMed, with a constellation of 4 satellites, constitutes a promising 

instruments for the retrieval of forest biophysical parameters.

 Objectives:
 Can X-band data be useful for forest biomass assessment?
 Investigate the X-band backscatter intensity and interferometric coherence.

Introduction
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Test site & data
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Test site

 Thuringian Forest (Germany)
 110 km x 50 km
 Moderate topography
 Tree species composition

 Scots Pine
 Norway Spruce
 European Beech

 Climate
 cool and rainy
 frequently clouded

 Peculiarities
 logging for forest exploitation
 Kyrill storm (February 2007)

Munich, IGARSS12
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Test site

Pine Spruce

Scots pine
(Pinus sylverstris)

Norway spruce
(Picea abies)

European beech
(Fagus sylvatica)
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 Visual interpretations

X-band backscatter

Digital orthophoto, 28apr08
CSK 34° HH, 41°, Desc. 
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and broadleaves
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X-band backscatter
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X-band backscatter

Conifers discrimination 
to broadleaves improved 
during leaf-off period.
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 Phenologies

Signal relatively stable
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X-band InSAR coherence
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 Visual interpretations

TDX SM 30aug10
Single pass

Bn=259 m

TSX HS 05jul09 – 16jul09
11 days repeat pass

Bn=209 m

CSK Himage 30oct10 – 31oct10 
1 day repeat pass

Bn=296 m

X-band InSAR coherence

Forested areas:

TDX – low decorrelation
CSK – high decorrelation
TSX – complete decorr.

RapidEye RGB – 13jun09

Open area

Urban
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 Temporal decorrelation: Boxplot – open area (grass)

X-band InSAR coherence

Slopes < 5°# stands
TSX: 11 
CSK: 70
TDX: 100
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 Volume/Temporal decorrelation: Boxplot – forest (spruce)

X-band InSAR coherence

Slopes < 5°# stands
TSX: 70 
CSK: 100
TDX: 64
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 Volume/Temporal decorrelation: Boxplot – forest (spruce)

X-band InSAR coherence

Slopes < 5°# stands
TSX: 70 
CSK: 100
TDX: 64

PDaily < 10mm 
PHourly < 1mm

θ = 49.7°
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 Volume decorrelation: Boxplot – forest (spruce)

X-band InSAR coherence
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X-band InSAR coherence

 InSAR Coherence versus Stem Volume

TDX SM 30aug10

CSK image 30oct11 - 31oct11 

- 1 day repeat pass -

- Single pass -
Bn=259 m

Bn=296 m

Slopes < 5°
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Growing Stock Volume [m3/ha]

r2
TDX=0.64

r2
CSK=0.49
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 Investigations of the CSK, TSX and TDX backscatter intensity and 
interferometric coherence have been conducted.

 Conifers and Broadleaves amplitude signal can be separated with CSK HH.

 High temporal decorrelation in X-band repeat pass acquisitions (even with 1 
day).

 X-band single pass coherence show potential for estimating biomass

Conclusions
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1. Introduction: Why Forest Observation?

2. SAR Techniques of interest for forestry applications

3. SAR for Forestry Applications – Some Basics

4. Forest Cover and Biomass Mapping – Excurses

1. BIOMASAR – Hypertemporal C-band Data Assimilation

2. Forest Cover Mapping Using Backscatter and Coherence

3. Forest Biomass Mapping Using Backscatter and Coherence

4. Polarimetry for Forest Cover Mapping

5. INSAR Phase and Tree Height

6. Seasonality of C-band Backscatter in Siberia

7. Seasonality of Coherence in Siberia

8. X-band coherence over the Thuringian Forest

9. Mapping of woody cover in KNP using L-band backscatter

Outline
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Mapping of fractional woody cover using
ALOS PALSAR L-band backscatter

in southern African savannas

M. URBAZAEV, C.J. THIEL, C.C. SCHMULLIUS, FSU Jena, Germany

R. MATHIEU, L. NAIDOO, CSIR Pretoria, SA

S. R. LEVICK, MPI for Biogeochemistry Jena, Germany

I. P. J. SMIT, Sientific Services, SANParks, Skukuza, SA

G. P.  ASNER, Carnegie Institution for Science, USA



ESA PECS SAR Remote Sensing Course, Mai/June 2016, Sofia

Outline1. Simultaneous occurrence of patches of trees, shrubs and grasses
2. Pronounced seasonal variations (e.g. dry and rainy seasons) 

 savannas are very heterogeneous, dynamic and sensitive ecosystems

3. Status of savannas and their temporal dynamics (e.g. vegetation height, woody cover, 
AGB)

4. Woody cover affects the carbon and water cycles, fire regimes, nutrient cycling and soil
erosion

Fig. 1: Predicted tree-grass ratios across rainfall gradients
(SANKARAN et al. 2004: 482) hanspeternarjes.de
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Study area / Data

Fig. 2: Study area
(Weather stations acronyms: NHL: Nhlanguleni; SKZ: Skukuza; TAL: Talamati; TSH: Tshokwane)
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Results/Discussion

C-band L-band
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Results/Discussion

Dry season Rainy season End of rainy season
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Results/Discussion

25 m 50 m 125 m 200 m
Pixel spacing
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Fig. 4: Mean R² between PALSAR HH backscatter intensity and 
LiDAR-based woody cover for three seasons at four different aggregation levels
(DRY dry season; EWET end of rainy season; MWET middle of rainy season) 

Results/Discussion
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Outline

Fig. 5: Comparison between the PALSAR-based woody cover (left) 
and LiDAR-based woody cover (right) for the test sites L1 and L2 

Results/Discussion
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Outline

Fig. 6: SAR-based prediction of woody cover plotted again LiDAR-based observed woody cover. 
Red line is the regression line, and dotted line is the 1:1 line

Results/Discussion
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1. Backscatter analysis (long wavelength, HV polarisation, the shorter the 
wavelength – the more images, summer data in boreal zone) – Sentinel-1, 
ALOS-2

2. Interferometry: Coherence analysis (shorter wavelengths require shorter 
temporal and spatial baselines, frozen conditions in the boreal zone), new 
results show great potential of single pass TanDEM-X coherence

3. Interferometry: Phase analysis (multi wavelength, polarisation, single-pass, 
acquisition conditions!) – no operational sensor constellation yet, but…

4. Polarimetry (long wavelength, high number of images) – still matter of 
research, some potential was demonstrated

5. Polarimetric Interferometry (long wavelength, spatial baseline, single-pass, 
acquisition conditions!) – no operational sensors yet, but…

6. (Polarimetric) Tomography (long wavelength, polarisation, spatial baselines, 
quasi single-pass, acquisition conditions!) – no operational sensors (and no 
planning for the future)

SAR Techniques – Summarising Evaluation


