Radar Remote Sensing

Introduction into SAR measurements, data characteristics & challenges

Nesrin Salepci (nesrin.salepci@unijena.de), Christian Thiel Friedrich-Schiller-University Jena Germany

Friedrich-Schiller-University Jena, Germany

Dept. of Earth Observation

Basic Research

- E.g. SAR coherence & Forestry

Applied Earth Observation

 E.g. landcover mapping using multitemporal SAR data

Project Coordination

 Coordination of many international projects

Education

- BSc Geography
- MSc Geoinformatics
- Various PhD Projects
- SAR-EDU

Outline

■ What is Remote Sensing/Earth Observation?

■ Active Radar Remote Sensing

- Electromagnetic spectrum : Why microwaves?
- Basic characteristics of radar systems
- Imaging geometry of radar systems

■ SAR Remote Sensing

- SAR resolution cell
- Effects of SAR imaging geometry
- Influences on radar backscatter
- SAR measurements
- Speckle Effect
- Spaceborne SAR systems

■ Summary

What is Remote Sensing/Earth Observation?

Remote sensing (RS), also called earth observation, refers to obtaining information about objects or areas at the Earth's surface without being in direct contact with the object or area.

http://freeda.files.wordpress.com/2007/10/sv003.jpg

2

Source of electromagnetic energy Interaction with the object

ESA PECS SAR Remote Sensing Course, September 2018, Slovakia – SAR Basics

3

4

SPOT 5 Optical satellite visible part of the spectrum

5

energy scattered off the leaf is dependent on:

The "greenness" of the leaf as a function of the amount of chlorophyll, which absorbs the energy that is needed for photosynthesis

- Source of electromagnetic energy
 Interaction with the object
- Interaction with the object
- Radiation back to sensor
- Reception of radiation by sensor
- 5 Interpretation and analysis

ESA PECS SAR Remote Sensing Course, September 2018, Slovakia – SAR Basics

Source of electromagnetic energy

ESA PECS SAR Remote Sensing Course, September 2018, Slovakia – SAR Basics

Source of electromagnetic energy

Passive and Active Remote Sensing

Passive remote sensing systems:

- Detect the reflected or emitted EM radiation from natural sources
- Some of the images represent reflected solar radiation in the visible and the near infrared regions of the EM spectrum
- others are the measurements of the energy emitted by the earth surface itself i.e. in the thermal infrared wavelength region

Active remote sensing systems:

- Detect reflected responses from objects irradiated by artificiallygenerated energy sources
- energy is transmitted from the remote sensing platform

measurement of relative return from the earth's surface

Radar remote sensing & electromagnetic wave

Outline

- What is Remote Sensing/Earth Observation?
- Active Radar Remote Sensing
 - Electromagnetic spectrum : Why microwaves?
 - Basic characteristics of radar systems
 - Imaging geometry of radar systems
- SAR Remote Sensing
 - SAR resolution cell
 - Effects of SAR imaging geometry
 - Influences on radar backscatter
 - SAR measurements
 - Speckle Effect
 - Spaceborne SAR systems
- Summary

electromagnetic spectrum

electromagnetic spectrum

Outline

- What is Remote Sensing/Earth Observation?
- Active Radar Remote Sensing
 - Electromagnetic spectrum : Why microwaves?
 - Basic characteristics of radar systems
 - Imaging geometry of radar systems
- SAR Remote Sensing
 - SAR resolution cell
 - Effects of SAR imaging geometry
 - Influences on radar backscatter
 - SAR measurements
 - Speckle Effect
 - Spaceborne SAR systems
- Summary

Basic characteristics of radar systems/SAR sensors

• active \Rightarrow independent of sun illumination

Active remote sensing sensors generate EM-waves

- no sunlight required night time acquisitions possible
- no problems due to bad illumination

Basic characteristics of radar systems/SAR sensors

- active \Rightarrow independent of sun illumination
- microwave \Rightarrow penetrates into/through objects

clouds and (partially) canopy, soil, snow

(almost) no problems with clouds, dust, fog. Sensing of "hidden" objects

https://ubique.americangeo.org/company-and-not-for-profit-spotlights/ursa-space-systems/

Characteristics / Example all weather

These images were acquired over the city of Udine, northeastern Italy, by ERS-1 on the 4th of July 1993 at 9.59 a.m. (GMT) and Landsat-5 on the same date at 9.14 a.m. (GMT) respectively. The clouds that are clearly visible in the optical image, are not appearing in the SAR image.

Characteristics / Example all weather

Cloud cover is a big problem in remote sensing of moist tropics

Characteristics / penetration through sand

Landsat Thematic Mapper shows the desert's surface

<u>SIR-C/X-SAR</u> shows what the landscape might look like if stripped bare of sand

Advantages / Example all weather

- active \Rightarrow independent of sun illumination
- microwave ⇒ penetrates into/through objects

The penetration depth is depending on **wavelength** and **dielectric characteristics** of objects

wavelengths: X-band: 3 cm

C-band: 6 cm L-band: 23 cm

Heavy Clouds and Rain Cells in X-Band SAR Images

\rightarrow Only visible at short wavelengths and extreme conditions

ESA PECS SAR Remote Sensing Course, September 2018, Slovakia – SAR Basics

Basic characteristics of radar systems/SAR sensors

- active \Rightarrow independent of sun illumination
- microwave \Rightarrow penetrates into/through objects
- coherent \Rightarrow interferometry, speckle
 - > Microwaves used for Earth Observation are <u>coherent waves</u>!!!
 - Waves maintaining a constant phase with respect to each other are coherent

Basic characteristics of radar systems/SAR sensors

- active \Rightarrow independent of sun illumination
 - microwave \Rightarrow penetrates into/through objects
- coherent \Rightarrow interferometry, speckle
- polarization \Rightarrow can be exploited

©http://www.wikipedia.org

Basic characteristics of radar systems/SAR sensors

- active \Rightarrow independent of sun illumination
- microwave ⇒ penetrates into/through objects
- coherent \Rightarrow interferometry, speckle
- polarization \Rightarrow can be exploited

Microwave sensors emit signals in horizontal (H) or vertical (V) polarizations.

The four combinations of SAR data polarizations:

- HH: The emitted and backscattered signals have horizontal polarization
- HV: The emitted signal has horizontal polarization, and the backscattered signal has vertical polarization.
- VH: The emitted signal has vertical polarization, and the backscattered signal has horizontal polarization.
- VV: Both emitted and reflected signals have vertical polarization

Basic characteristics of radar systems/SAR sensors

- active \Rightarrow independent of sun illumination
- microwave \Rightarrow penetrates into/through objects
- coherent \Rightarrow interferometry, speckle
- polarization \Rightarrow can be exploited
- spatial resolution: space-borne: 0.5 m 100 m (Sentinel-1: ≈10 m, TerraSAR-X: ≈1 m) air-borne: > 0.2 m

Basic characteristics of radar systems/SAR sensors

- active \Rightarrow independent of sun illumination
- microwave \Rightarrow penetrates into/through objects
- coherent \Rightarrow interferometry, speckle
- polarization \Rightarrow can be exploited
- spatial resolution ⇒ space-borne: 0.5 m 100 m (Sentinel-1: ≈10 m, TerraSAR-X: ≈1 m) air-borne: > 0.2 m
- **backscatter** \Rightarrow is the reflection of signals back to the direction from which they came.

Magnitude and characteristics of backscatter depend on

geometric & dielectric properties of objects

Passive

Interaction with the object

SPOT 5 Optical satellite *visible part of the spectrum*

energy scattered off the leaf is dependent on:

The "greenness" of the leaf as a function of the amount of chlorophyll, which absorbs the energy that is needed for photosynthesis

TerraSAR-X Radar satellite *microwave part of the spectrum*

octive

energy scattered off the leaf is dependent on:

size shape orientation dielectric properties

ESA PECS SAR Remote Sensing Course, September 2018, Slovakia – SAR Basics

Outline

■ What is Remote Sensing/Earth Observation?

■ Active Radar Remote Sensing

- Electromagnetic spectrum : Why microwaves?
- Basic characteristics of radar systems
- Imaging geometry of radar systems
- SAR Remote Sensing
 - SAR resolution cell
 - Effects of SAR imaging geometry
 - Influences on radar backscatter
 - SAR measurements
 - Speckle Effect
 - Spaceborne SAR systems
- Summary

Radar Remote Sensing

Side looking imaging geometry

Side looking imaging geometry

resolution

Islant range

azimuth resolution

slant-range resolution depends on the bandwidth of the system

azimuth resolution is a function of the antenna length and sensor height over the Earth's surface!

azimuth

flight path

Outline

- What is Remote Sensing/Earth Observation?
- Active Radar Remote Sensing
 - Electromagnetic spectrum : Why microwaves?
 - Basic characteristics of radar systems
 - Imaging geometry of radar systems
- SAR Remote Sensing
 - SAR resolution cell
 - Effects of SAR imaging geometry
 - Influences on radar backscatter
 - SAR measurements
 - Speckle Effect
 - Spaceborne SAR systems
- Summary

Synthetic Aperture Radar (SAR)

The key factor that is utilized in SAR is to synthesize a much longer antenna in azimuth direction by making use of the motion of the SAR sensor in order to achieve finer resolution.

Synthetic Aperture Radar (SAR) – azimuth resolution

Synthetic Aperture Radar (SAR) – range resolution

Synthetic Aperture Radar (SAR) – resolution cell

 $\delta_{az} = \frac{\lambda r_0}{2A_{az}}$ A SAR pixel = sum of all contributions Azimuth within the resolution cell resolution λ : carrier wavelength range r₀ : range distance A_{az}: azimuth aperture azimuth with the slant-range resolution depending on the bandwidth transmitted PULSe $\delta_{\rm sr} = \frac{1}{2W}$ Slant-range resolution δ c : speed of light W : pulse bandwidth SAR resolution cell

with the azimuth resolution being a function of the aperture in azimuth

resolution vs. pixel spacing

resolution is a measure of the system's ability to distinguish between adjacent targets

pixel spacing represents the distance on the ground for a pixel in the range and azimuth directions

Acquisition resolution of Sentinel 1 Level-1 SLC

Mode	Resolution rg x az	Pixel spacing rg x az
SM	1.7x4.3 m to 3.6x4.9 m	1.5x3.6 m to 3.1x4.1 m
IW	2.7x22 m to 3.5x22 m	2.3x14.1 m
EW	7.9x43 m to 15x43 m	5.9x19.9 m
WV	2.0x4.8 m and 3.1x4.8 m	1.7x4.1 m and 2.7x4.1 m

Outline

- What is Remote Sensing/Earth Observation?
- Active Radar Remote Sensing
 - Electromagnetic spectrum : Why microwaves?
 - Basic characteristics of radar systems
 - Imaging geometry of radar systems

■ SAR Remote Sensing

- SAR resolution cell
- Effects of SAR imaging geometry
- Influences on radar backscatter
- SAR measurements
- Speckle Effect
- Spaceborne SAR systems
- Summary

Geometric Effects in SAR images

Effects of side-looking geometry

→ The mapping of a radar image is contrary to the intuitive mapping of an optical image

→ Side looking geometry of SAR systems cause some typical geometric effects

- Controlled by:
 - ✤ Incidence angle
 - Topography
- The effects are:
 - Foreshortening
 - Layover
 - Radar shadow

• Slopes oriented to the SAR appear compressed (Distance between a and b is shortened)

range

- Appears as very bright area
- More pronounced in near range (small incidence angle) than in far range (high incidence angles)

Foreshortening

b

Slant range

 Steep slopes oriented to the SAR lead to ghost images

• When radar beam reaches the top of a high feature (b) before it reaches the base (a)

azimuth

b

Layover

- Steep slopes oriented away from the SAR return no signal
- No signals can be transmitted to this area (as it is blocked by the slope)
- Thus no signals can be scattered back from these areas

Radar shadow

• Appears as black area in the image

SAR Data Example

Effects of side-looking geometry

Andreas R. Brenner and Ludwig Roessing, Radar Imaging of Urban Areas by Means of Very High-Resolution SAR and Interferometric SAR, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 46, NO. 10, OCTOBER 2008 (X-band)

SAR Data Examples

GoogleMaps

Layover Mask Computed from DEM

100m DEM

simulated ERS-Image white: lay-over & foreshortening

Outline

- What is Remote Sensing/Earth Observation?
- Active Radar Remote Sensing
 - Electromagnetic spectrum : Why microwaves?
 - Basic characteristics of radar systems
 - Imaging geometry of radar systems

■ SAR Remote Sensing

- SAR resolution cell
- Effects of SAR imaging geometry
- Influences on radar backscatter
- SAR measurements
- Speckle Effect
- Spaceborne SAR systems
- Summary

• The properties of the microwaves that were scattered back from Earth's surface depends on a number of parameters:

• local slope & orientation

System parameters : Wavelength/Frequency

Penetration of Microwaves

×

System Parameters

polarization

resolution

Incidence angle

wavelength / frequency

Radar Backscatter

Target Parameters

- dielectric constant
- surface roughness
- 3-D distribution of scatterers & scattering mechanisms
- local slope & orientation

ESA PECS SAR Remote Sensing Course, September 2018, Slovakia – SAR Basics

LE TOAN

System parameters : Polarization

local slope & orientation

F-SAR Airborne SAR System of DLR - fully polarimetric X-Band Mode (R=HH, G= HV, B=VV)

Subset

Neu-Gablonz, Bavaria, Germany

©DLR-

HR

Subset of Neu-Gablonz Area - River, Fields and ... (R=HH, G= HV, B=VV)

a purification plant ©DLR-HR

H

System parameters : Incident angle

Incidence angle at: far range > near range

- Backscatter decreases with increasing incidence angle (if all other conditions remain constant)
- Magnitude of decrease depends on surface roughness and dielectric properties

System parameters : resolution

Radar Backscatter

ENVISAT / ASAR IM 2 Oberpfaffenhofen 100 km x 100 km; 25 m resolution (© ESA)

TerrasAR-X Spotlent Image 2 m resolution

Target parameters : Dielectric Properties

Determined by dielectric constant ε_r :

- Strongly dependent on water content of natural media
- Controls reflection properties of natural media and thus the strength of radar backscatter (higher $\varepsilon_r \rightarrow$ higher backscatter)

Effect of soil moisture on backscattering behavior

and dielectric constant (Woodhouse, 2006)

Target parameters : Surface Roughness

Radarsat, C-band, HH Bathirst Island, Canada

mud, smooth surface, low radar backscatter

Lime stone, rough surface, high radar backscatter

Target parameters : Scattering Mechanisms

The backscattered signal results from:

- surface scattering
- volume scattering
- multiple volume-surface scattering (double-bounce)

- 1) direct backscattering from plants
- 2) direct backscattering from underlying soil
- 3) multiple scattering between plants and soil
- 4) multiple scattering between plants,
- 5) leaves, stalks ect.

The relative importance of these contributions depend on

- surface roughness
- dielectric properties of the medium
- All of these factors depend on
 - the radar frequency
 - the polarization
 - the incidence angle

Target parameters : Scattering Mechanisms

Radar Backscatter

System Parameters

- wavelength / frequency
- polarization
- Incidence angle
- resolution

Target Parameters

- dielectric constant
- surface roughness
- 3-D distribution of scatterers & scattering mechanisms
- local slope & orientation

Backscattering Coefficient σ_o

Levels of Radar backscatter	Typical scenario
Very high backscatter (above -5 dB)	Man-Made objects (urban)
	Terrain Slopes towards radar
	 very rough surface
	 radar looking very steep
High backscatter (-10 dB to 0 dB)	rough surface
	 dense vegetation (forest)
Moderate backscatter (-20 to -10 dB)	medium level of vegetation
	agricultural crops
	 moderately rough surfaces
Low backscatter (below -20 dB)	smooth surface
	calm water
	• road
	 very dry soil (sand)

Outline

- What is Remote Sensing/Earth Observation?
- Active Radar Remote Sensing
 - Electromagnetic spectrum : Why microwaves?
 - Basic characteristics of radar systems
 - Imaging geometry of radar systems

■ SAR Remote Sensing

- SAR resolution cell
- Effects of SAR imaging geometry
- Influences on radar backscatter
- SAR measurements
- Speckle Effect
- Spaceborne SAR systems
- Summary

SAR Measurements

Most commonly used image is the intensity which is: **Intensity = amplitude**²

SAR Measurements

Single look complex (SLC) pixel value is a complex number!

1. Amplitude

SAR Measurements

Phase is the shift angle between the phase of pulse and echo and relates to the object distance

due to contributions from different scatterers in the resolution cell: *Phase is random for one image*

Second image of the same area from different sensor positions cancels out the phase contribution introduced by individual scatterers!!

Outline

- What is Remote Sensing/Earth Observation?
- Active Radar Remote Sensing
 - Electromagnetic spectrum : Why microwaves?
 - Basic characteristics of radar systems
 - Imaging geometry of radar systems

■ SAR Remote Sensing

- SAR resolution cell
- Effects of SAR imaging geometry
- Influences on radar backscatter
- SAR measurements
- Speckle Effect
- Spaceborne SAR systems
- Summary
Salt and Pepper Speckle "Noise"

Backscatter value of a pixel

• Resolution cells are made up of many scatterers with different phases

- Every grey vector corresponds to a scatterer in the resolution cell
- Resultant value of the pixel (red vector) is the coherent sum of all those individual contributions

Coherent sum of all the contributions (red vector)

after Sarti (2011)

Backscatter value of a pixel

Speckle Reduction by spatial filtering

original SAR image SAR data © AeroSensing GmbH speckle filtered Bayesian algorithm

Speckle Reduction by temporal multilooking (ERS)

5 spatial looks 20 x 20 m ground resolution 2 dB radiometric resolution 320 spatio-temporal looks 20 x 20 m ground resolution 0.3 dB radiometric resolution

Outline

- What is Remote Sensing/Earth Observation?
- Active Radar Remote Sensing
 - Electromagnetic spectrum : Why microwaves?
 - Basic characteristics of radar systems
 - Imaging geometry of radar systems
- SAR Remote Sensing
 - SAR resolution cell
 - Effects of SAR imaging geometry
 - Influences on radar backscatter
 - SAR measurements
 - Speckle Effect
 - Spaceborne SAR systems
- Summary

Examples of satellite based radar sensors

Radarsat 1, 2

ALOS (PALSAR)

Envisat (ASAR)

TerraSAR-X

Examples of satellite based radar sensors

Sentinel-1 is the first of the Copernicus Programme satellite constellation conducted by the European Space Agency (ESA)

Based on a constellation of two satellites, the Sentinel-1 mission is developed for continuation of the Cband SAR data flow provided by its predecessor ERS and Envisat.

The constellation of 2 satellite provides revisit cycle of six days!!!

ESA PECS SAR Remote Sensing Course, September 2018, Slovakia - SAR Basics

Spaceborne SARs

satellite	owner	band	resolution	look angle	swath	lifetime
ERS-1	ESA	С	25 m	23°	100 km	1991-2000
ERS-2	ESA	С	25 m	23°	100 km	1995-2012
Radarsat-1	Canada	С	10 m - 100 m	20°- 59°	50 - 500 km	1995-2013
ENVISAT	ESA	С	25 m - 1 km	15°- 40°	100 - 400 km	2002-2012
ALOS	Japan	L	10 m -100 m	35°- 41°	70 - 360 km	2006-2011
Cosmo	Italy	Х	ca. 1 m - 16 m			2007-
TerraSAR-X	Germany	Х	1 m - 16 m	15°- 60°	10 - 100 km	2007/2010-
& TanDEM-X						
Radarsat-2	Canada	С	3 m - 100 m	15°- 59°	10 - 500 km	2007-
ALOS-2	Japan	L	3 m – 100 m	8°-70°	25 – 350 km	2014-
Sentinel-1	ESA	С	5 m – 50 m	20°-46°	20 - 400 km	2014-

Outline

- What is Remote Sensing/Earth Observation?
- Active Radar Remote Sensing
 - Electromagnetic spectrum : Why microwaves?
 - Basic characteristics of radar systems
 - Imaging geometry of radar systems
- SAR Remote Sensing
 - SAR resolution cell
 - Effects of SAR imaging geometry
 - Influences on radar backscatter
 - SAR measurements
 - Speckle Effect
 - Spaceborne SAR systems

■ Summary

Advantages

- → all weather capability (small sensitivity of clouds, light rain)
- day and night operation (independence of sun illumination, active instruments, they have their own source of energy)
- → no effects of atmospheric constituents (multitemporal analysis)
- ✓ sensitivity to *dielectric properties* (water content , biomass, ice)
- → sensitivity to surface roughness (ocean wind speed)
- → accurate measurements of *distance* (interferometry)
- ✓ sensitivity to man made objects
- → sensitivity to *target structure* (use of polarimetry)
- subsurface penetration (the longer the wavelength, the higher the transmission through a medium)

Inconvenients

- → *speckle* (difficulty in visual interpretation)
- → topographic effects
- → etc.

Summary

Applications of radar remote sensing systems

SAR's ability to pass relatively unaffected through clouds, illuminate the Earth's surface with its own signals, and precisely measure distances makes it especially useful for variety of applications:

Hi, welcome to the **EO college.** Your hub to learn Earth observation. Here you can **discuss with the EO**

Check out 🖸 college

https://eo-college.org

Supported by:

Federal Ministry of Economics and Technology

on the basis of a decision by the German Bundestag

ESA PECS SAR Remote Sensing Course, September 2018, Slovakia – SAR Basics

Water and Microwaves

• Water molecules (H₂O) act like a electric dipoles

Water molecule [E. Generalic, https://glossary.periodni.com/glossary.php?en=water]

Compass [Source:openclipart.org]

 H₂O shows strong orientational polarization if electromagnetic field is applied

