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Interferometry: mapping the millimeter

Source: web portal Hansje Brinker
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Prior knowledge

• Radar principles, wavelength indications, SAR concept, resolution, 
satellite orbits, scattering,… 

• Basic calculus: complex numbers, (rectangular form, polar form, 
exponential form), trigonometry,…
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Learning objectives

• Interferometry: intuitive approach, physical approach

• Understanding sensitivity

• Basic observables and variables, concepts

• Practical data processing

• Quality control
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2-6-2016

Challenge the future

Delft
University of
Technology

14 May 2014: Oldest telescope of the Netherlands found at 
tunnel zone Delft (older than 1650)
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Hans Lippershey’s patent, 1608
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Christiaan Huygens 
(1678)
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SAR SLC observations
SLC: Single-Look Complex data

•Single-look: no averaging, finest 
spatial resolution

•Complex: both real and imaginary 
(In-phase and quadrature phase) 
stored

Amplitude Phase
Uninterpretable, due to 
scattering mechanism

Coherent imaging
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Intuitive approach: geometry
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Radar Interferometry
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+π
–π



25



26

June 2, 2016 26

Range
Expressed as phase 
(radians)
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Range
Expressed as integer 
cycles + fractional phase

frac
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Two satellites: the ‘baseline’



29

Reference phase (flat earth phase)

Ellipsoid

-π

+π

Topography will add 
variation to the “flat 
earth phase”
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Example in 2D: interferogram
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Interferometry:
deriving the equations
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Phase-range relationship

This equation holds for dual-pass InSAR
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Phase-height relationship
(Far-field approximation)

Ellipsoid
Topographic phase is (inversely) scaled 
by the perpendicular baseline!
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Phase and topography: height ambiguity
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Height ambiguity

Height difference related to 1 phase cycle:
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Baseline dependency, height ambiguity
Bperp 173 m, Bt= 1day Bperp 531 m, Bt= 1 day

H2pi=45m H2pi=16m
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Deformation 
measurements
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Satellite radar interferometry• Coseismic interferogram, showing deformation 
Izmit earthquake

• Every color cycle 7.5 cm horizontal motion
• Showing which segment of fault ruptured
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Mauna Loa, Hawaii
• Deformation (inflation) of 

the Mauna Loa summit
• Position of the magma 

chamber better determined
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Image: Falk Amelung

…Very sensitive to deformation

Subsidence Las Vegas due to ground water extraction



48

Phase-deformation relationship

Subsidence Δz

1 cycle LOS deformation is equal 
to half the physical wavelength
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Topography and deformation

Ellipsoid

Sensitivity to deformation 
1000x higher than for 
topography
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InSAR data processing
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Coregistration principle

Earth

Sat 1

Image size in range

Image projected on earth
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Coregistration principle
Sat 1

Sat 2
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Coregistration principle
The images on your 

computer: equal size but not 
matching:
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Coregistration principle

Offsets estimated
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Coregistration principle

Offsets estimated, and image 
values re-estimated (resampled)
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Offset vectors in 2D
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Step 1: orbit-based

By using satellite orbit 
and timing information, 

we can estimate the 
shift between the two 

images (roughly)
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Coregistration

Master Slave

 Use amplitude cross-correlation

 Sampling is different for the two acquisitions
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Master-Slave Offsets

Fit a polynomial, 
and remove outliers
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Resampling

 Use polynomial to calculate position of each master pixel in slave

 Interpolate value in slave
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Interpolation/resampling

• Interpolation kernel should cover main spectrum, and minimal amount 
of replica’s
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Filtering - Range

• Required to remove non-overlapping spectral parts

• Wavenumber shift is baseline dependent
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Interferogram formation

Phase contributions: reference surface+topography+deformation+atmosphere+noise

)* 1 2
1 2 1 2 1 2

j j j(1 2y y = y e y e = y y e
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Subtract reference phase 

- ref_phase

Phase contributions: topography+deformation+atmosphere+noise

Topo-pair

Bperp=380m ; H_amb=23m; Btemp=35days

Rule of thumb

Bperp=100m  -> H_amb=100m

Bperp=200m  -> H_amb=50m

Bperp=400m  -> H_amb=25m
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Phase ambiguity estimation
(AKA Phase unwrapping. Essentially means counting fringes)
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Unwrapping Phase Images

• Unwrapping involves finding (integer)shift values for each point.
• Unwrapping is simple in one dimension

• One path through data
• Use local gradient to estimate shift.

• For 2D images, the problem is more difficult (NP-hard)
• Many paths through the data
• Shifts along all paths must be consistent

cy
cl

es

1

2

3

0
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General approach

• Strictly: phase unwrapping is ill-posed problem (not possible to 
obtain unique solution)

• Heuristic approach: assumption of Nyquist criterion:
sampling rate is high enough to avoid aliasing

• In other words:
True (unwrapped) phase values of neighboring pixels assumed to lie with 

one-half cycle

Heuristic approach: A method based on empirical 
information that has no explicit rationalization 
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Forward problem
• Define the Wrapping operator:

|Δψ(x)| =| ψ(x+1) – ψ(x) | < π

• Main condition for wrapped phase gradients:

Inverse problem

• Phase unwrapping is the integration of phase 
gradients
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One-dimensional example

0.5 0.75 0.0 0.25 0.5 0.75 0.0 0.25

-0.5 -0.25 1.0 1.25 1.5 1.75 2.0 2.25

0.5 0.75 1.0 1.25 1.5 1.75 2.0 2.25

Wrapped data (modulo 1 cycle):

0.25 -0.75 0.25 0.25 0.25 -0.75 0.25
Gradient:
ψ(x):

Δψ(x):

ψ(x)=W{Δψ(x)}:^Δ

Nyquist criterion: phase differences between adjacent 
samples are element of [-0.5, 0.5) cycles

Wrapped differences of wrapped phases:

0.25 0.25 0.25 0.25 0.25 0.25 0.25
+1 +1

Possible solution that violates Nyquist criterion:

+1.25 !

φ(x):

φ = ψ(x)^Δ Δ

Integration:



71

• Key to phase unwrapping:
• not: directly estimating unwrapped phase, but…
• Estimating the phase differences between them (phase gradients)

• Problems occur due to additive phase noise (decorrelation) or 
high spatial frequency phase variation
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2D phase unwrapping

(
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Suppose 2D vector field 

Definition of curl :
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Suppose 2D vector field 

Definition of curl :
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FAAssume that

From vector analysis (and potential field theory) it is known that the curl of a 
gradient field is equal to zero. The gradient field is therefore a conservative field.

0 F
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–Δi F(i,k+1) –Δi F(i,k+1)= –[ F(i+1,k+1) – F(i,k+1)]

Δk F(i+1,k)= [ F(i+1,k+1) – F(i+1,k)]

Δi F(i,k) =   F(i+1,k) – F(i,k)

–Δk F(i,k) = –[ F(i,k+1) – F(i.k)]

(i,k) (i+1,k)

(i,k+1)

Curl of vector gradient of scalar potential F is 
identically zero.

:F
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•In phase unwrapping: the vector 
gradient field of the unwrapped 
phase is necessarily zero (every 
closed loop integral is zero)

•The unwrapped phase field is thus 
completely specified, up to an 
additive constant

•However, the vector gradient field 
of the wrapped phase can be non-
conservative (closed-loop integrals 
can give non-zero results)

Ascending and descending, by M.C. Escher

e.g. a true gradient outside [–π,+π) interval will be wrapped into it

0 F



77

Example

0.0

0.9 0.1

0.2
0

+0.2

-0
.1

+0.8-0.2

-0
.9


+0
.1 0.0

-0.1 0.1

0.2 0.0

-0.1 0.1

0.2

Result is path independentNeutral



78

Example residue

0.0

0.8 0.5

0.2
+1

+0.2

+0
.3

+0.3

-0
.8

=+
0.

2

Positive residue

0.0

-0.2 0.5

0.2 0.0

-0.2 -0.5

0.2

Result is path dependent
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0.0

0.8 0.5

0.2
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Example branch cut

0.1

0.9 0.6

0.4
+1

+0.3

+0
.2

+0.3

-0
.8

=+
0.

2

Positive residue

0.3

0.5 0.8

0.9
-1

-0.4

-0
.1

-0.3

-0
.2

Negative residue

0 Unloaded residue pair
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Previous lecture: Learning objectives

• Interferometry: intuitive approach, physical approach

• Understanding sensitivity

• Basic observables and variables, concepts

• Practical data processing

• Quality control
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Learning objectives 2nd lecture

• Interferogram interpretation

• Quality control InSAR

• Time series techniques: PSI, SBAS

• PSI interpretation and example HB
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Interferogram interpretation



89

24 Aug 2014, Napa Valley, M6.0 
earthquake. 7-31 Aug Sentinel-1a

Processing by P. Marinkovic and Y.Larsen
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antenna

pulse

Radar image datum and geometry
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Right-looking radar system

Sa
te

lli
te

 d
ire

ct
io

n

Early azimuth

Late azimuth

Near 
range

Far 
range

Internal datum:

Radar coordinate 
system

Line 1
Line 2
Line 3
Line 4
Line 5
Line 6
Line 7
Line 8

Line 26000
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Binary data file
Line 1
Line 2

Line 3

Line 4

Line 5
Line 6

Line 26000

00 01 02 03 04 05 06 07 
08 09 10 11 12 13 14 15 
16 17 18 19 20 21 22 23 
24 25 26 27 etc

‘Computer’ datum:

Data file / matrix
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Geographic datum:
ascending

‘Computer’ datum

N
Line 1
Line 2
Line 3
Line 4
Line 5
Line 6

Line 26000

00 01 02 03 04 05 06 07 08 09 10 11 
12 13 14 15 16 17 18 19 20 21 22 23 
24 25 26 27 etc

Geograpic datum

Image is upside-
down !!!

East

South

North

West

(North)

(South)

(East)
(West)
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Geographic datum:
descending

‘Computer’ datum

N Line 1
Line 2
Line 3
Line 4
Line 5
Line 6

Line 26000

00 01 02 03 04 05 06 07 08 09 10 11 
12 13 14 15 16 17 18 19 20 21 22 23 
24 25 26 27 etc

Geograpic datum

East

South

North

West

(North)

(South)

(East) (West)

Image is flipped 
left-right !!!
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Summary

• Descending image (morning acquisitions) are flipped left-right!
• Ascending image (evening acquisitions) are flipped up-down!
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Interpretation: On the sign of the phase

-image on the right is standard 
output Doris (independent of 

descending or ascending image)

LANDSAT
NORTH

EAST

W
EST

SOUTH

NORTH

SOUTH

EA
ST

 !!
!

W
EST !!!

-π +π

Early 
azimuth

Far rangeNear range

Late 
azimuth
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Phase-deformation relationship

Subsidence Δz
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Interpretation: On the sign of the phase

FIRST, consider the TIMES of the images!!!

We perform: MASTER – SLAVE

CHECK: tmaster < tslave

If YES: range increase (Rt1 < Rt2)
 phase decrease (φt1> φt2)
interferometric phase increase (φt1−φt2 > 0)





4
D
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Interpretation: On the sign of the phase

NORTH

SOUTH

EA
ST

 !!
!

W
EST !!!

-π +π

Early 
azimuth

Far rangeNear range

Late 
azimuth

Towards center: BYR: increasing 
interferometric phase increasing range to 

satellite





4
D

Towards center: BRY: decreasing 
interferometric phase decreasing range to 

satellite

Colorbar BYR: increasing 
interferometric phase

+
-
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Interpretation: On the sign of the phase
NORTH

SOUTH

EA
ST

 !!
!

W
EST !!!

-π +π

Early 
azimuth

Far rangeNear range

Late 
azimuth
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Interpretation: On the sign of the phase
NORTH

SOUTH

EA
ST

 !!
!

W
EST !!!

-π +π

Early 
azimuth

Far rangeNear range

Late 
azimuth

NORTH

SOUTH

EA
ST !!!W

ES
T 

!!
!

-π +π

Far range Near range

az

CONCLUSION: Right lateral 
(strike slip)
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Quality control

• The Stochastic Model for InSAR
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Model of observation equations (1)

Rank deficiency!     Often treated opportunistically

Observation Unknowns

Functional model:

Stochastic model:
Based on thermal (instrumental) noise

This is too much simplified, let’s 
make it more realistic!
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Model of observation equations (2)
• Add unknown parameter:

• Phase ambiguity

• Add error signal to stochastic model:
• Atmosphere (troposphere, ionosphere)
• Orbit errors
• Decorrelation

• Geometric
• Temporal

Integer valued unknown

Spatial varying 
disturbance~trend

Pixel-based noise

Spatially ~constant

Spatially varying

)(
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Main condition for interferometry

Coherence!
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Coherence (Complex Correlation)

 Definition:

 Estimation of coherence magnitude:

 Coherence magnitude is a measure of the correlation 
(values 0 – 1)
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Coherence loss as function of time
1 day interval 3.5 year interval

Anthropogenic features remain coherent over 
long time intervals
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Coherence, multilooks, and phase PDF 

1 look 10 looks 20 looks

γ=0.9 
γ=0.7 
γ=0.5 
γ=0.3 
γ=0.1

γ=0.9 
γ=0.7 
γ=0.5 
γ=0.3 
γ=0.1

γ=0.9 
γ=0.7 
γ=0.5 
γ=0.3 
γ=0.1
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Temporal Decorrelation

If scatterers move with respect 
to each other, the phase sum 
changes

Distributed scatterer pixel 
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Temporal decorrelation

Time interval 1 day 1 year 2 year 3 year 6 year

Perpendicular 
baseline (m)

29 112 93 185 166
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Coherence and wavelength
C

o
h

er
en

ce

Frequency band

P- L- C- X-

Loss of correlation is due to:
•  volume of vegetation
•  movement of vegetation
•  dielectric change (moisture)

Effective phase center

VHF
UHF

P-band

L-band

C-band
X-band

Source: H.Zebker
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Coherence as function of wavelength

Results SIR-C mission, 
Simultaneous C and L band 
∆T=6 months

Source: H.Zebker



113

Error sources

Decorrelation

Atmosphere

Orbit error

DEM error
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Structure of Atmosphere
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Ionospheric refractivity

N(x,z,t)= -4.03107 ne/f
2

ne = number of electrons
f =  electromagnetic frequency

 Delay due to free electrons
 Dispersive (frequency-dependent): 
How many times worse is L-band than C-band?
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Ionospheric Delay

Main ionospheric signal 
usually causes a small trend 

in interferogram for X/C-band
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Wenchuan Earthquake, L-Band

Ding et al, ALOS Symposium, 2008

Ionospheric fringes?
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Coregistration Offsets

Range offsets Azimuth offsets

Ding et al, ALOS Symposium, 2008
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High-Latitude Azimuth offsets

Meyer and Nicoll, 
Fringe 2007
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Structure of Atmosphere
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Tropospheric Refractivity

N(x,z,t)  k1

P

T
 k2

' e

T
 k3

e

T 2







1.4W

•P=Pressure
•T=Temperature
•e=Partial water vapour pressure
•W=Liquid water

Most spatial 
variability

•Hydrostatic term from surface measurements
•Wet delay term (sensitivity 4-20 times higher for WV than for T)
•Liquid term limited (<5%)
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Water vapor
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Spatial variability of water vapour

260 million liter 
excess water in 
cloud system
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Tropospheric signal
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Temporal variability in water vapour

In the presence of 
topography, changes 
in the refractivity  
between the two 
acquisitions will 
cause an 
interferometric phase 
even if no spatial 
variability
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Change in refractivity profile

l1

l2

N1

N2

t1
t2

t1

t2

Delay

l1 is the difference 
in delay at p

l2 is the difference 
in delay at q

 A difference between l2 and l1 will result in a phase offset between p and q
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Error sources

Decorrelation

Atmosphere

Orbit error

DEM error
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Orbit Error Components

2 m

2 cm/s

2 mm/s²

(nearly 
linear)

(linear)

Dominant components

Courtesy Herman Baehr
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Orbit Error Correction

Interferogram Orbit Correction 
Estimate

Remaining Phase

Courtesy Herman Baehr
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Ramon Hanssen

Persistent Scatterer Interferometry
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Time-Series approach: Persistent Scatterers
• Pixels with strong and consistent (coherent) reflections in time.
• Multi-pass InSAR – time series
• Estimate atmospheric signal, ambiguities, topography, displacement
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Validation experiment
• 5 (4) reflectors, ~200 m spacing
• Monitored March 2003 – now 
• 3.5 years: ~40 Envisat and ~40 ERS-2 images
• Spirit leveling performed at every acquisition
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CR Differential displacement 

RMS per observation: 2 mm
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Deformation
measurements:

time-series
approaches

• Evaluation per point: 
double-differences

• Opportunistic subsets

Image F. Serafino, Napels University
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Subsets vs Single-master stack

Master

Persistent-
scatterers
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Rotterdam time series

Doris: The Delft Object-oriented Radar Interferometric software (DEOS)

Perpendicular baseline 72 m

Temporal baseline 35 days

Doppler = 37 Hz
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psic4_ifg_matrix_ml420.jpg
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PS pioneered by Polimi, Milano
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Etna – Estimated Velocity Field (1995-2000)Etna – Estimated Velocity Field (1995-2000)

Produced by TRE/Polimi
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Examples: Nation-wide deformation 
model



150Surface motion map of the Netherlands
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Infrastructure monitoring
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Case study Kornwerderzand

mm/ye
a
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Ramon Hanssen, Ling Chang

Rail monitoring    
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The problem
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• Measuring rail stability from space
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Horizontal and vertical deformation

Input: 
• The deformation 

(line of sight)

Output:
• Transversal, 
• Longitudinal,
• Normal (vertical)

Track buckling
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A B

Normal

Transversal

Waalhaven and Eemhaven harbors

• Vertical ~1 mm precision
• Horizontal ~4 mm precision
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Validation with 
measurement train 

'Lifting' of the track, from surveying train

Satellite Measurement
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Play with PSI data

• Data set made available by SkyGeo, the Netherlands

• Demo.skygeo.com

• Login:esa_course pw: esa_course7


