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Quantification of vegetation properties from optical data

2/44



Sentinel 3
Operational 
• Global coverage
•  300 m, 

Greenness indicators
Stress?

Potential photosynthesis

surface
reflectance

8th Earth Explorer: FLEX
Launch: 2022
• Global coverage
•  300 m, 

A signal coming directly 
from the plant

Actual photosynthesis

Vegetation emitted 
fluorescence

How to quantify vegetation productivity?
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What is sun-induced chlorophyll fluorescence (SIF)?

(re-)absorption and scattering mechanisms

Leaf Canopy Atmosphere
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FLEX aims to quantify actual
photosynthetic activity of terrestrial 
ecosystems from space, accounting 
for vegetation health status and
stress conditions.

Cell

Leaf

Canopy

Airborne

Space

FLEX products

State of the art

?
FLEX

Sentinel-3
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Tandem mission concept driven by synergy:
- S3 OLCI & SLSTR used for FLEX atmospheric correction
- Synergy of S3 OLCI and FLEX-FLORIS for improved biophysical parameter retrieval.
- S3 & FLEX products used as inputs in photosynthesis model (CO2 assimilation)
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Intro, same as Gus

Chlorophyll SIF Vegetation productivity (GPP)

FLEX-SIF

Optical
(FLORIS 
+ OLCI)

2 peaks, peak ratio
Full SIF

Vegetation 
propertiesRTMs

Thermal
Leaf/canopy 
Temperature APAR

Photosynthesis 
model 

GPP

FLEX

Sentinel-3

Assimilation approach.

Synergistic approach to quantify photosynthesis
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How to quantify vegetation properties?
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Today we will learn: 
Semi-automated mapping of vegetation properties from optical RS data

• What are biophysical parameters?

• Why is it important to quantify them?
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The problem:
Biophysical parameter retrieval is an essential step in modeling the 
processes occurring on Earth and the interactions with the 
atmosphere.

The analysis can be done at local or global scales by looking at bio-geo-
chemical cycles, atmospheric situations, ocean/river/ice states, and 
vegetation dynamics. 

Main parameters: crop yield, biomass, leaf area coverage, chlorophyll
content, fraction vegetation cover, GPP,…. 

Land/vegetation parameters cannot be estimated directly from optical 
RS data. A model is required!

The objective: Transform measurements into biophysical parameter 
estimates.

The data:

• Input data: satellite/airborne spectra, in situ (field) radiometers, or 
simulated spectra by RTMs

• Output results: estimation of a biophysical parameter
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Retrieval of biophysical parameters  from Remote 
Sensing (RS) data always occurs through a model, e.g. 
through statistical models or through inversion of 
physically-based radiative transfer models (RTM).

Physically based RTM approaches

Introduction retrieval biophysical parameters

RTM

Design

Retrieval

Evaluation

VIs

Statistical approaches
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Model

Remote sensing image
Map of a vegetation

property

Retrieval of (continuous) vegetation properties

1. Statistical models
1. Parametric regression models
2. Nonparametric regression models

1. Linear 
2. Nonlinear

2. Inversion of physically based radiative transfer models
1. Numerical optimization
2. Lookup-table (LUT)-based inversion
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Taxonomy of retrieval methods, three main families:

1. Statistical: parametric and non-parametric:
• Parametric models rely on some physical knowledge of the problem

and build explicit parametrized expressions that relate a few spectral
bands with the biophysical parameter(s) of interest.

• Non-parametric models are data-driven models. They are adjusted to
predict a variable of interest using a training dataset of input-output
data pairs.

2. Physical: try to reverse RTMs.

• Physically based algorithms are applications of physical laws
establishing photon interaction cause–effect relationships. Model
variables are inferred based on specific knowledge, typically obtained
with radiative transfer functions.

3. Hybrid:

• A hybrid-method combines elements of nonparametric statistics and
physically based methods. Hybrid models rely on the generic
properties of physically based methods combined with the flexibility
and computational efficiency of nonparametric nonlinear regression
methods.
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Retrieval families
Parametric regression Non-parametric regression RTM inversion

Spectral relationships that are 
sensitive to specific
vegetation properties

Normalized Difference Vegetation Index

Models that simulate
interactions between
vegetation and radiation

leaf

canopy

Advanced techniques that
search for relationships
between spectral data and 
biophysical variables

Methods of these different families can be combined: hybrid methods
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Variable 

of 

Interest

Statistical interpretation of RS

• Simple statistical relationships (VIs) constitute the BULK of RS analysis.

• These analyses allow to determine IF there is a relationship, not WHY there is a 
relationship.

• Linear methods such as VIs are useful indicators of biophysical (e.g. structure) or 
biochemical (e.g. chlorophyll) parameters, however in natural, complex 
environments indices are confounded by additional abiotic and biotic factors.

• VIs lack generality for estimating biophysical parameters.

• Apart from VIs a large number of powerful alternative statistical retrieval 
methods exists (e.g. non-parametric regression methods).

Remote 

Sensing 

Data

Statistical relationship

- Parametric regression

- Non-parametric regression
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Parametric regression
Parametric regression assume an explicit model
for retrieval

• Discrete band methods(VIs): 
• 2-band: SR, NDVI, PRI, OSAVI 
• 3-band: TVI, MCARI, SIPI 
• 4-band: TCARI/OSAVI 

• Shape-based methods:
• Red-edge position (REP)

• Derivative/Integral indices

• Continuum removal

• wavelet

VI Red edge derivative

integral Continuum removal wavelet
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Parametric regression:

Strengths Weaknesses

• Simple and comprehensive regression models; 

little knowledge of user required.

• Fast in processing

• Computationally inexpensive

• Makes only poorly use of the available information 

within the spectral observation; at most a spectral 

subset is used. Therefore, they tend to be more noise-

sensitive as compared to full-spectrum methods 

• Parametric regression puts boundary conditions at the 

level of chosen bands, formulations and regression 

function.

• Statistical function accounts for one variable at a time.

• A limited portability to different measurement 

conditions or sensor characteristics 

• No uncertainty estimates are provided. Hence the 

quality of the output maps remains unknown.
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Parametric regression

19/44



Linear nonparametric models:
• Stepwise multiple linear regression (SMLR)

• Principal component regression (PCR)

• Partial least squares regression (PLSR)

• Ridge regression (RR)

• Least Absolute Shrinkage and Selection Operator (LASSO)

Non-parametric models (1/2):
Data-driven methods: Do not assume explicit feature relations

PCR PLSR RR & LASSO
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Non-parametric models (2/2):
Data-driven methods: Do not assume explicit feature relations

Decision Trees (DT)

Neural networks (NN) Kernel ridge regression (KRR)

Gaussian processes regression 
(GPR)

Also:
• Elastic Net (ELASTICNET)
• Bagging trees (BAGTREE)
• Boosting trees (BOOST)
• Neural networks (NN)

• Extreme Learning Machines (ELM)
• Relevance Vector Machine (RVM)
• Gaussian process Regression (GPR)
• Variational Heteroscedastic Gaussian

Process Regression (VHGPR)

Non-linear nonparametric models:
Support vector regression (SVR)
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Gaussian Processes Regression (GPR)
• A GPR model is a probabilistic (Bayesian) model directly in function space, 

with no intermediate model or model parameters.

• GPR are equivalent to kernel ridge regression, least square suport vector 
machines (SVM), Kriging, large neural networks (NN) and very closely related
to SVM regulazation networks.

• GPR alleviates some shortcomings of the previous methods, while 
maintaining very good numerical performance and stability:

– GPR is far more simple than NN, and needs less sample points ☺

– Not only a mean prediction for each sample (pixel), but also a full distribution over the 
output values including an uncertainty of the prediction (confidence interval). ☺

– GPR provide a ranking of features (bands) and samples (spectra), thus partly overcoming 
the blackbox problem. ☺

• http://www.rainsoft.de/projects/gausspro.html
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More info on: http://www.gaussianprocess.org/
Rasmussen and C Williams, Gaussian Processes for Machine Learning, 2006 22/44

http://www.rainsoft.de/projects/gausspro.html
http://www.gaussianprocess.org/


Example GPR

Chl [µg/cm2]

RGB CASI

St Dev

Chl [µg/cm2]
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Strengths Weaknesses
• Full-spectrum methods. They make use of the complete 

spectral information.

• Advanced, adaptive (non-linear) models are built.

• Methodologically, accurate and robust performance is 

enabled.

• Some MLRAs cope well with datasets showing redundancy 

and high noise levels.

• Once trained, imagery can be processed time efficient.

• Some of the non-parametric methods (e.g.  ANNs, decision 

trees) can be trained with a high number of samples 

(typically >1,000,000).

• Some MLRAs provide insight in model development (e.g. 

GPR: relevant bands; decision trees: model structure).

• Some MLRAs can provide multiple-outputs (e.g. PLRS, ANN, 

SVR, GPR and KRR)

• Some MLRAs provide uncertainty intervals (e.g. GPR).

• Training can be computational expensive.

• Hypercomplex models can be generated. Their generic 

potential is limited and hence they do not generalize well, 

based on the training data (problem of over-fitting).

• Some regression algorithms are difficult (or even impossible) 

to train with a high number of samples.

• Expert knowledge is required, e.g. for tuning. However, 

toolboxes exist automating some of the steps in this sub-

process.

• Some of the methods can be considered as black boxes.

• Some regression algorithms elicit instability when applied

with datasets statistically deviating from the datasets used

for training. 

Non-parametric regression:
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Non-parametric regression
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ARTMO
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Retrieval ToolsForwardModelsFile Help

Project

DB adminstration

Settings

New DB

Change DB

Delete

Update

LUT class

Project

Database

Leaf

Canopy

PROSPECT 4

PROSPECT 5

4SAIL

FLIGHT

Sensor

Graphics

Spectral Indices

MLRA

LUT-based Inversion

Leaf

Canopy

Model inputs

Save

Load

User’s manual

Installation guide

Disclaimer

Spectral resample

DLM

Combined

SCOPE

Combined

LIBERTY

INFORM

GSA

Emulator

GSA configuration

GSA results

Show Log

Fluspect-B

Info license

PROSPECT-D

MetaInfo

A-SGM
New

Load

Rename

http://ipl.uv.es/artmo/
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ARTMO v. 3.24

http://ipl.uv.es/artmo/


Open Matlab and provide the ARTMO path
In Matlab Command Window: artmo
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Schematic overview for systematic evaluation of nonparametric
regression models to estimate biophysical variables

Regression 
algorithm

Database
[spectral+
variables]

T/V

Noise

Spectral 
data

Biophysical 
variables

Spectral 
data

Biophysical 
variables

Developed 
model

Estimated 
biophysical 

variable

Goodness-of-
fit statistics

Optimized 
model

Biophysical 
variable map

Spectral 
data

Training Validation

% Training data/ % 
validation data

To account for natural 
variability
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Outlook:
MLRA mapping based on User data

• User Input data 

• MLRA setting

• Validation

• Mapping
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MLRA mapping based on User data
To train and validate single-output and multi-output MLRA models and apply it to an image
using a field dataset.

The procedure will be as follows:

1. User data: Insert field data for training and validation

2. Single-output: Choose single-output MLRA models and define training/testing partitioning

3. Validation: Validate the defined MLRA strategies

4. Retrieval: Apply the best one to a remote sensing image.
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Input: User data (e.g. field data)
User data for training and validation requires one input file, including:

1. Biophysical parameters (e.g., LAI, chlorophyll content,…)

2. Associated spectra (e.g., obtained from a remote sensing image)

User data need to be organized in a matrix format in plain text file, according to example below:

Input 
parameters

Associated
spectra

Wavelengths

• Make sure to fill up the whole Matrix! In case of empty cells, use NaN and remove those samples in the following 
step.  

• Make sure that wavelengths are the same as the remote sensing image! They need to match. A band selection or 
band transformation can be later done in Settings.
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Import User data window

1. Browser: Import User data file.

2. Inspect if right data in left panel. By clicking on OK data will appear in right panel.

3. Define a row  with a parameter to its line. Click on Add. Multiple parameters can be define by repeating this step. Parameters can be 
combined.

4. Define the row where spectra starts.

5. If needed, convert spectral data. 

6. Option to remove samples.

7. Configured input data can be saved and loaded  as .m file. 

8. Finally, click on Import. 33/44



Single-output Settings

1. Select the MLRA to be trained and validated. 

2. The option to add Gaussian noise is provided. A range of noise scenarios can be applied.

3. Select the User data training/validation partitioning. This will randomly partition the input data in a 
training and validation dataset. Make sure to keep some data for validation (thus < 100% training). 
Also a range of training/validation partitioning scenarios can be applied. If no validation is required, 
go directly to Retrieval. 

4. Click on Finished. 34/44



Multi-output Settings

Prepare models for multiple variables. When multiple input  variables have been 
selected, the following regression algorithms provide multiple-outputs with the 
same single model:

The same options as Single-output are provided.
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• partial least square regression (PLSR)
• Multioutput support vector regression 

(MSVR)
• neural networks (NN) 
• kernel ridge regression (KRR)
• Multi-output Gaussian process regression 

(MGPR)



• K-fold: The partition divides the observations into k disjoint 
subsamples (or folds), chosen randomly but with roughly equal 
size. 

• Leave-one-out: Leave-one-out is a special case of 'K-fold', in 
which the number of folds equals the number of observations.

• Hold-out: This partition divides the observations into a training 
set and a test (or holdout) set.

Cross-validation sub-sampling options
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Validation
✓Start a New validation: provide a name

✓All MLRA scenarios will be trained using training data and validated 
against validation data according to goodness-of-fit indicators:
• R, R2, RMSE, RRMSE, NRMSE, ME, MAE

✓Results will be automatically stored in a MySQL table.

✓When finished, an overview table will appear (see further). Such 
overview table can also be consulted when selecting: Load. A 
window with generated validation results and metadata will appear: 
(see next slide)
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MLRA validation

1. Choose how to sort outputs, according to parameter, statistic and number of top results per regression algorithm. 
Click on OK.

2. Select a MLRA scenario for retrieval (e.g. the top performing one). It will move to lower panel. When clicking on 
Done it will move to the Retrieval window (slide 11).

3. Select a MLRA scenario for Graphics plottings: 1:1-line measured vs. predicted. For GPR additional band relevance 
information will be provided.  Make sure to have User data loaded, because the selected model will be 
regenerated.

4. In case ranges were introduced (noise, training/validation partitioning), validation results can be plotted in a 2D-
matrix. Results are plotted according to selected parameter and statistic. 38/44



Retrieval

Instead of going through the validation procedure, one can also choose to immediately train a regression model and 
apply it to a remote sensing image. User data has for training to be first inserted.

1. Select the parameter and the regression model.

2. Optionally noise can be added.

3. Select the training partitioning. Here 100% training data can be applied. The configuration need to be ADDed and 
chosen model will appear in the down panel. In case a model has been selected during the validation step, it will 
directly appear in that panel.

4. Band tools options are provided (e.g. spectral subset, PCA).

5. When clicking on OK, the mapping procedure will start (see next slide). 39/44



The mapping of selected biophysical parameter requires the following steps:

1. Select the directory with Input images

2. Images according to TIFF or ENVI file format (including .hdr file) will be identified and listed. Multiple 
images can be selected. They will be processed one-after-another. 

3. Select the Output directory

4. When the processing is done,  the output maps can be viewed. Select one through Open Map and click 
on PREVIEW.

Retrieval

A drop-down list will show the provided output 
layers. One output map can then be peviewed. 

Input image Output map
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• Visualization of an output layer. In Options, map properties can be controlled (e.g. color scale, 
color table).

• Make sure to orient the map according to ij for correct orientation. 

• The map can be saved according to various vector or bitmap formats. Redundant white space 
around the figure will be automatically removed. 

• Settings can be set as default – will be automatically applied to subsequent maps.

• Click on Sample to visualize the map. Click on OK to save it away. 

Final maps
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Exercise
✓ Evaluate the performance of MLRAs using a field dataset and S2 spectral 

data.
✓ Apply the best performing regression algorithm to S2 images.
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exercise
Subsets S2 before after Kineta fire

Map LAI before and after using a machine 
learning regression algorithm (MLRA)
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LAI before LAI after

Relative differences
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Questions?


