
_p

CROP MAPPING WITH SENTINEL-1 AND SENTINEL-2
Case Study: Seville 2017, Spain

TRAINING KIT – LIS0218
DFSDFGAGRIAGRAGRI

2

Did you find this material useful?

Authors would be glad to receive your feedback or suggestions and to know how this material was

used. Please, contact us on training@rus-coperenicus.eu

Enjoy RUS!

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0

International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

3

Table of Contents

1 Introduction to RUS ... 4

2 Crop mapping – background ... 4

3 Training .. 4

3.1 Data used ... 4

3.2 Software in RUS environment ... 4

4 Step by step ... 5

4.1 Data download – ESA SciHUB .. 5

4.2 Download data .. 6

4.3 Sentinel-1 SNAP Preprocessing ... 8

4.3.1 Apply orbit file ... 9

4.3.2 Thermal Noise Removal ... 9

4.3.3 Calibration ... 9

4.3.4 Speckle filter .. 10

4.3.5 Terrain correction .. 10

4.3.6 Subset .. 11

4.3.7 Write .. 12

4.3.8 Bulk processing preparation .. 12

4.4 R – Processing .. 13

4.4.1 Setting R... 14

4.4.2 Load AuxData... 15

4.4.3 User input .. 15

4.4.4 S1 | SNAP Pre-processing .. 17

4.4.5 S1 | R Processing ... 18

4.4.6 S2 | R Processing ... 19

4.4.7 Stack S1 and S2 .. 20

4.4.8 Training data .. 21

4.4.9 Random Forest preparation .. 22

4.4.10 Random Forest Classification .. 23

4.4.11 Accuracy assessment ... 24

5 Further reading and resources .. 26

4

1 Introduction to RUS

The Research and User Support for Sentinel core products (RUS) service provides a free and open

scalable platform in a powerful computing environment, hosting a suite of open source toolboxes

pre-installed on virtual machines, to handle and process data derived from the Copernicus Sentinel

satellites constellation.

In this tutorial, we will employ RUS to run a supervised classification using the Random Forest

algorithm and Sentinel-1 / Sentinel-2 as input data over an agricultural area in Seville, Spain.

2 Crop mapping – background

Reliable information on agriculture and crops is

required to assist and help in the decision-making

process of different applications. Different

methods can be used to gather this information

but satellite earth observation offers a suitable

approach based on the coverage and type of data

that are provided.

A few years ago, the European Union (EU) started

an ambitious program, Copernicus, which includes

the launch of a new family of earth observation

satellites known as the Sentinels. Amongst other

applications, this new generation of remote sensing satellites will improve the observation,

identification, mapping, assessment, and monitoring of crop dynamics at a range of spatial and

temporal resolutions.

3 Training

Approximate duration of this training session is two hours.

3.1 Data used

• 7 Sentinel-2A images acquired from June 1st until July 31st 2017 [downloadable at

https://scihub.copernicus.eu/ using the .meta4 file provided in the AuxData folder of this

exercise]

• 7 Sentinel-1A/1B images acquired from June 1st until July 31st 2017 [downloadable at

https://scihub.copernicus.eu/ using the .meta4 file provided in the AuxData folder of this

exercise]

• Pre-processed data stored locally

@/shared/Training/TAT0618_CropMapping_Croatia/AuxData

3.2 Software in RUS environment

Internet browser, SNAP + S1 Toolbox, R + RStudio

Agricultural area near Seville (Spain) seen by Sentinel-2. Source: RUS Copernicus

https://scihub.copernicus.eu/
https://scihub.copernicus.eu/

5

4 Step by step

4.1 Data download – ESA SciHUB

Before starting the exercise, we need to make sure that we are registered in the Copernicus Open

Access Hub so that we can access the free data provided by the Sentinel satellites.

Go to https://scihub.copernicus.eu/

Go to Open HUB. If you do not have an account please sign up in the upper right corner, fill in the

details and click register.

You will receive a confirmation email on the e-mail address you have specified: open the email and

click on the link to finalize the registration.

Once your account is activated – or if you already have an account – log in.

https://scihub.copernicus.eu/

6

4.2 Download data

In this exercise, we will use 7 Sentinel-1 and 7 Sentinel-2 images during the year 2017. The following

table shows the date and reference of the images that will be used:

To improve the data acquisition process, we will use a download manager (See NOTE 1) that will

take care of downloading all products that will be used in this exercise. The metadata of the Sentinel

products are contained in a products.meta4 file created using the ‘Cart’ option of the Copernicus

Open Access Hub

The products.meta4 file containing the links to the Sentinel-1 and Sentinel-2 products to be

downloaded have been already created following the methodology explained (See NOTE 2). You

can find the products.meta4 files saved in the following path:

Path: /shared/Training/TAT0618_CropMapping_Croatia/Original/

Before using the downloading manager and the .meta4 file, let us test if aria2 is properly installed in

the Virtual Machine. To do this, open the Command Line (in the bottom of your desktop window)

and type:

aria2c

SATELLITE DATE IMAGE ID

Sentinel-1

2017-06-01 S1A_IW_GRDH_1SDV_20170601T182618_20170601T182643_016844_01C013_F35E

2017-06-13 S1A_IW_GRDH_1SDV_20170613T182618_20170613T182643_017019_01C583_4C25

2017-06-19 S1B_IW_GRDH_1SDV_20170619T182531_20170619T182556_006123_00AC18_303B

2017-07-02 S1A_IW_GRDH_1SDV_20170702T181819_20170702T181844_017296_01CDF5_4DD6

2017-07-08 S1A_IW_GRDH_1SDV_20170708T062702_20170708T062727_017376_01D051_2318

2017-07-20 S1A_IW_GRDH_1SDV_20170720T062702_20170720T062727_017551_01D5A7_A95F

2017-07-31 S1A_IW_GRDH_1SDV_20170731T182621_20170731T182646_017719_01DAD0_8200

Sentinel-2

2017-06-01

2017-06-11

2017-06-21

2017-07-01

2017-07-11

2017-07-21

2017-07-31

S2A_MSIL2A_20170601T110651_N0205_R137_T30STG_20170601T111225

S2A_MSIL2A_20170611T110621_N0205_R137_T30STG_20170611T111012

S2A_MSIL2A_20170621T110651_N0205_R137_T30STG_20170621T111222

S2A_MSIL2A_20170701T111051_N0205_R137_T30STG_20170701T111746

S2A_MSIL2A_20170711T110651_N0205_R137_T30STG_20170711T111223

S2A_MSIL2A_20170721T110621_N0205_R137_T30STG_20170721T112025

S2A_MSIL2A_20170731T110651_N0205_R137_T30STG_20170731T111220

 NOTE 1: A download manager is a computer program dedicated to the task of downloading possibly

unrelated stand-alone files from (and sometimes to) the Internet for storage. For this exercise, we will

use aria2. Aria2 is a lightweight multi-protocol & multi-source command-line download utility. More

info at: https://aria2.github.io/

https://aria2.github.io/

7

If aria2 is properly installed, the response should be as follows. If the response is ‘-bash aria2c:

command not found’ it means aria2 is not installed (See NOTE 3).

Once aria2 is ready to use, we can start the download process. For that, we need to navigate to the

folder where the products.meta4 is stored. Type the following command in the terminal and run it.

cd /shared/Training/TAT0618_CropMapping_Croatia/Original/

Next, type the following command (in a single line) to run the download tool. Replace username and

password (leave the quotation marks) with your login credentials for Copernicus Open Access Hub

(COAH). Do not clear your cart in the COAH until the download process is finished.

 NOTE 2: The Copernicus Open Access Hub allows you to add products to a ‘Cart’. For that, perform a

query; select the desired products from the result list and click on the ‘Add Product to Cart’ icon -

To view the products present in the cart just click anytime on the User Profile icon on top right corner of

the screen and then on "Cart". To download the products contained in the cart just click on "Download

Cart" on the bottom right of the page. A download window will pop up, asking the user confirmation to

save a .meta4 file named ‘products.meta4’. This file contains all the metalinks of the products.

 NOTE 3: If (and only if) the response is ‘-bash aria2c: command not found’, you need to install aria2. In

the command line, type: sudo apt-get install aria2

When requested, type: Y

Once finished, test the installation as explanied before.

8

aria2c --http-user='username' --http-passwd='password' --check-certificate=

false --max-concurrent-downloads=2 -M products.meta4

The Sentinel products will be saved in the same path where the products.meta4 is stored. Move the

Sentinel-1 and Sentinel-2 images to their corresponding folder and do not forget to unzip the

Sentinel-2 products after that. Your folders should have the same structure as shown below.

Sentinel-1 folder  /shared/Training/TAT0618_CropMapping_Croatia/Original/S1/

Sentinel-2 folder  /shared/Training/TAT0618_CropMapping_Croatia/Original/S2/

4.3 Sentinel-1 SNAP Preprocessing

Once the Sentinel-1 images are downloaded, we need to run some pre-processing steps before they

can be used for the classification. For this purpose, we will use the SNAP software. In Applications ->

Other open SNAP Desktop; click Open product , navigate to the following path and open the first

S1 image (2017-06-01)

Path: /shared/Training/TAT0618_CropMapping_Seville/Original/S1

The opened product will appear in Product Explorer. Click + to expand the contents of the first image,

then expand the Bands folder and double click on the Amplitude_VV band to visualize it.

9

In order to process this and the other Sentinel-1 images, we will take advantage of the batch

processing option available in SNAP. In this way, we can define a specific processing chain and apply

it to several images in an automatic way. This allows reducing processing time and storage

requirement since no intermediate steps are created. Only the final product is physically saved.

Before running batch processing, it is necessary to create a graph containing all the processing steps.

Go to Tools -> Graph Builder. So far, the graph only has two operators: Read (to read the input) and

Write (to write the output). With right-click on the top panel, you can add an operator while a

corresponding tab is created and added on the bottom panel.

4.3.1 Apply orbit file

The first step of our Sentinel-1 preprocessing chain will update the orbit metadata (See NOTE 4)

of the product to provide accurate satellite position and velocity information. To add the operator to

our graph, right click and navigate to Add -> RADAR -> Apply-Orbit-File. Connect the new Apply-Orbit-

File operator with the Read operator by clicking to the right side of the Read operator and dragging

the red arrow towards the Apply-Orbit-File operator. In the corresponding tab, leave all the

parameters for this operator as default.

4.3.2 Thermal Noise Removal

Next, we will remove the thermal noise (See NOTE 5). To add the operator to our graph, right click

and navigate to Add -> RADAR -> Radiometric -> ThermalNoiseRemoval. In the corresponding tab,

leave all the parameters for this operator as default.

4.3.3 Calibration

Now, we can perform the Radiometric calibration. The objective of SAR calibration is to provide

imagery in which the pixel values can be directly related to the radar backscatter. Though

uncalibrated SAR imagery is sufficient for qualitative use, calibrated SAR images are essential to

quantitative use of SAR data (See NOTE 6). To add the operator to our graph, right click and

navigate to Add -> RADAR -> Radiometric -> Calibration. In the corresponding tab, leave all the

parameters for this operator as default.

 NOTE 4: The orbit state vectors provided in the metadata of a SAR product are generally not accurate

and can be refined with the precise orbit files, which are available days-to-weeks after the generation

of the product. The orbit file provides accurate satellite position and velocity information. Based on this

information, the orbit state vectors in the abstract metadata of the product are updated. (SNAP Help)

 NOTE 5: Thermal noise in SAR imagery is the background energy that is generated by the receiver itself.

(SNAP Help) It skews the radar reflectivity to towards higher values and hampers the precision of radar

reflectivity estimates. Level-1 products provide a noise LUT for each measurement dataset, provided in

linear power, which can be used to remove the noise from the product.

10

4.3.4 Speckle filter

SAR images have inherent salt and pepper like texturing called speckles that degrade the quality of

the image and make interpretation of features more difficult (See NOTE 7). To reduce the speckle

effect and smooth the image we apply a speckle filter. For this exercise, we will use the default

speckle filter used in SNAP (Lee Sigma). To add the operator to our graph, right click and navigate to

Add -> RADAR -> Speckle Filtering -> Speckle-Filter. In the corresponding tab, leave all the parameters

for this operator as default.

4.3.5 Terrain correction

Our data are still in radar geometry, moreover due to topographical variations of a scene and the tilt

of the satellite sensor, the distances can be distorted in the SAR images. Therefore, we will apply

terrain correction to compensate for the distortions and reproject the scene to geographic projection

(See NOTE 5). To add the operator to our graph, right click and navigate to Add -> RADAR ->

Speckle Filtering -> Speckle-Filter. In the corresponding tab, make sure you select UTM / WGS 84

(Automatic) as Map Projection.

 NOTE 6: Typical SAR data processing, which produces level-1 images, does not include radiometric

corrections and significant radiometric bias remains. The radiometric correction is necessary for the

pixel values to truly represent the radar backscatter of the reflecting surface and therefore for

comparison of SAR images acquired with different sensors, or acquired from the same sensor but at

different times, in different modes, or processed by different processors. (SNAP Help)

 NOTE 7: Speckle is caused by random constructive and destructive interference of the de-phased but

coherent return waves scattered by the elementary scatters within each resolution cell. Speckle noise

reduction can be applied by either spatial filtering or multilook processing. (SNAP Help)

 NOTE 5: The geometry of topographical distortions in SAR

imagery is shown on the right. Here we can see that point B

with elevation h above the ellipsoid is imaged at position B’ in

SAR image, though its real position is B". The offset Δr

between B' and B" exhibits the effect of topographic

distortions. (SNAP Help)

11

4.3.6 Subset

In the last step of the Sentinel-1 pre-processing chain, we will subset the original extent of the image.

This will reduce the size of the product and processing time. In addition, we will use the subset

operator to save the two output bands (Sigma0_VV and Sigma0_VH) as separate products. This time,

we will add two subset operators. For that, right click and navigate to Add -> Raster -> Geometric ->

Subset. Repeat the process one more time to add the second operator. In the first subset tab, make

sure you select only the Sigma0_VH tab. Then, select the option Geographic Coordinates and paste

the following Well-Known Text to define to subset area. Then, click Update and visualize the area by

clicking on the zoom icon. Repeat the same process for the second subset tab - Subset(2) –

but this time select only Sigma0_VV as source band.

POLYGON ((-6.632361888885498 37.4149055480957, -5.662446022033691 37.4149055480957,

-5.662446022033691 36.78205108642578, -6.632361888885498 36.78205108642578, -6.6323

61888885498 37.4149055480957, -6.632361888885498 37.4149055480957))

12

4.3.7 Write

Finally, we just need to properly save the output. For that, we first need to add two Write operators

to our graph. Right click and navigate to Add -> Input-Output -> Write. Repeat the process one more

time to add the second Write tool. In the two Write tabs, make sure you set the output format as

GeoTIFF.

Once finished, click on the Save icon located on the lower part of the graph builder. Navigate to the

following path and save the graph as S1_Processing_Original.xml.

Path: /shared/Training/TAT0618_CropMapping_Croatia/AuxData

4.3.8 Bulk processing preparation

To use the batch processing option for all the Sentinel-1 images using GPT, we first need to change

the input and output variables defined on the graph we have just created. Navigate to the following

path, right click on the graph file (called S1_Processing_Original.xml) and select Open With -> Open

with Mousepad

Path: /shared/Training/TAT0618_CropMapping_Croatia/AuxData

Once the .xml file is open, click on View -> Line Numbers. In line 7, delete the path (do not remove

<file> and </file>) to the input image and write $input1. Line 7 should look like this:

<file>$input1</file>

In line 163, delete the path (do not remove <file> and </file> to the input image and write $target1.

Line 163 should look like this:

<file>$target1</file>

13

In line 173, delete the path (do not remove <file> and </file> to the input image and write $target2.

Line 173 should look like this:

<file>$target2</file>

Once the input and output variables are changed, save the graph as a new xml file. Go to File->Save

As. Navigate to the following path and save it as S1_Processing_GPT.xml. We will call this graph using

R later on this exercise to batch process all the Sentinel-1 images.

Path: /shared/Training/TAT0618_CropMapping_Croatia/AuxData

4.4 R – Processing

At this point, we are ready to start the next part of our analysis. This exercise will be done using

RStudio, an integrated development environment (IDE) for R (See NOTE 6). It includes a console,

syntax-highlighting editor that supports direct code execution, as well as tools for plotting, history,

debugging and workspace management. The choice of this software (e.g. instead of SNAP) is based

on the necessity of applying a replicable processing chain to a large dataset in a specific period.

Go to Applications/Development/R/RStudio and open RStudio. Now, click on File -> New File -> R

script. Before starting, save the file in the following path and name it ‘R_Code_TAT0618’. From time

to time, remember to save the file by clicking on File -> Save.

Path: /shared/Training/TAT0618_CropMapping_Croatia/AuxData/

The R code that will be used to perform the analysis is provided to you in this step-by-step guide.

Copy-Paste each section in your R Script and run it. The code is divided in different blocks, each one

containing detailed explanations.

 NOTE 6: R is a language and environment for statistical computing and graphics. It provides a wide

variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis,

classification, clustering…) and graphical techniques, and is highly extensible. R can be extended (easily)

via packages. There are about eight packages supplied with the R distribution and many more are

available through the CRAN family of Internet sites covering a very wide range of modern statistics. It is

available as Free Software under the terms of the Free Software Foundation’s GNU General Public

License in source code form.

14

4.4.1 Setting R

Before starting to create our code, it is important to introduce the default layout of RStudio.

The Graphical User Interface (GUI) has four main parts. The top left quadrant is the editor, where you

write R code you want to keep for later – functions, classes, packages, etc. The lower left quadrant is

the console. It is a REPL (Read-Eval-Print-Loop) for R in which the code written in the editor can be

tested. The top right quadrant has two tabs: environment and history. The Environment will list all

the variables, data, functions, etc. used in your code. The bottom right panel is the misc panel, and

contains five separate tabs, where the most important are plots (will contain the graphs you

generated with R), packages (tells which packages are available to use and let you install additional

ones) and help (allows you to search for extra information about functions and packages).

Before running the code, it is important to highlight that R works by calling packages, which contain

the functions that are used in the analysis. They can be installed directly from the console and later

loaded to the current R session.

For this exercise, we will need the following packages.

Install and load packages

pck<-c("tidyr","rgdal","ggplot2","randomForest","RColorBrewer", "caret",

"reshape2", "raster", "e1071", "rasterVis")

new_pck<-pck[!pck %in% installed.packages()[,"Package"]]

if(length(new_pck)){install.packages(new_pck)}

lapply(pck, require, character.only=TRUE)

Specify working directory

setwd("/shared/Training/TAT0618_CropMapping_Seville/AuxData/")

15

4.4.2 Load AuxData

Load the auxiliary data that will be used in our analysis. Make sure they are located in the AuxData

folder of this training kit. (@/shared/Training/TAT0618_CropMapping_Seville/AuxData/)

Study_area<-readOGR("Study_Area.shp")

training<-readOGR("Training.shp")

validation<-readOGR("Validation.shp")

4.4.3 User input

Select which Sentinel mission you want to use for the classification. Depending on your choice,

different parts of the code will be run or not (look for the if statements).

Do you want to use Sentinel-1, Sentinel-2 or both for the classification?

TRUE/FALSE

S1_input<-FALSE

S2_input<-FALSE

S1_S2_input<-TRUE

Set the path to the directory where you Sentinel-1 and Sentinel-2 images are stored.

Where are your images stored? Set the path.

S1_path<-"/shared/Training/TAT0618_CropMapping_Seville/Original/S1"

S2_path<-"/shared/Training/TAT0618_CropMapping_Seville/Original/S2/"

Specify the number of images that have been downloaded.

How many images do you have?

t_images<-7

Set the number of images you want to use for the classification.

How many images do you want to use for the classification?

n_images<-5

In case you are using Sentinel-2, choose which bands you want to use as input for the classification.

Copy this code if you want to use all the Sentinel-2 bands except band 1 and 10.

For S2, bands to be used for classification

bands<-c("B((0[2348]_10m)|(((0[567])|(1[12])|(8A))_20m)).jp2$")

If you prefer to try with bands 2,3,4,8,11,12 use the following code instead

Bands 2,3,4,8,12

bands<-c("B((0[2348]_10m)|((1[12])_20m)).jp2$")

16

In case you have already pre-processed the Sentinel-1 images in SNAP, set the variable as TRUE. If
not, write FALSE.

Are your Sentinel-1 images pre-processed already in SNAP?

S1_pp<-TRUE

Define the path where the GPT version of SNAP is stored in your Virtual Machine.

Path to GPT?

GPT_path<-"/usr/local/snap6/bin/gpt"

Set the path where the graph that will be used to pre-processed the Sentinel-1 images is stored.

Path to SNAP graph?

GPT_graph<-

"/shared/Training/TAT0618_CropMapping_Seville/AuxData/S1_Processing_GPT.xml"

Select the folder where you want to store the Sentinel-1 pre-processed data.

Output directory for S1 preprocessed data?

S1_Out_Path<-

"/shared/Training/TAT0618_CropMapping_Seville/Processing/S1_Processing/"

Define the number of trees you want to use in the Random Forest Classification.

How many trees do you want to use in the RF classification?

n_trees<-500

Last, we will create several internal cross-references that will be used later on the code.

Internal cross-references

nrow<-ifelse(S1_input, 1, ifelse(S2_input & nchar(bands)>40, 2, ifelse

(S1_S2_input & nchar(bands)>40, 3, ifelse (S2_input & nchar(bands)<40, 4, 5

))))

condition_1<-parse(text=ifelse(S1_S2_input==TRUE, print("S1_S2_images"),

ifelse(S2_input==TRUE, print("S2_images"), print("S1_images"))))

condition_2<-parse(text=paste0(condition_1, "[[1]]"))

extent_tmpl<-extent(219800,230540,4097480,4104080)

17

4.4.4 S1 | SNAP Pre-processing

This section will only be run if you have chosen S1 as input for the classification (S1 or S1 + S2) and

the images are not pre-processed already. The code uses the xml graph (S1_Processing_GPT.xml)

created before (See 4.3.8 Bulk processing preparation). It will modify the variables $input1, $target1

and $target2 with the appropriate reference for each S1 image and save each output (Sigma0_VV

and Sigma0_VH) with a unique name (e.g. 20170601_VV) in a specific folder.

First, we create a list with the names of the Sentinel-1 original products. The sensing date contained

in the name is extracted.

Create list of S1 and extract date

if ((S1_input | S1_S2_input) & !S1_pp){

 S<-list.files(S1_path, recursive = TRUE, full.names = TRUE, pattern="S1")

 dates<-substr(S, 75,82)

Next, we create a list for the $input1 variable by pasting together ‘–Pinput1=’ and the name of each
Sentinel-1 product.

Prepare script for GPT

input<-list()

 for (i in S){

 input[[i]]<-paste("-Pinput1=", i, sep="")}

The same procedure is used to define the $target1 variable. In this case, the list contains the output
path, date and VV polarization for each output.

output1<-list()

for (i in 1:length(S)){

 output1[[i]]<-paste("-Ptarget1=", S1_Out_Path, dates[[i]], "_VV",

".tif", sep="")}

The same procedure is used again to define the $target2 variable. In this case, the list contains the
output path, date and VH polarization for each output.

output2<-list()

for (i in 1:length(S)){

 output2[[i]]<-paste("-Ptarget2=", S1_Out_Path, dates[[i]], "_VH",

".tif", sep="")}

 Next, we combine all the parts we have created.

18

Create final script for GPT

script<-paste(GPT_path,GPT_graph, input, output1, output2)

Finally, GPT is called for each element of the list.

Bulk processing

for (i in 1:length(script)){

 system(script[[i]])}}

4.4.5 S1 | R Processing

This section will only be run if you have chosen Sentinel-1 as input for the classification (S1 or S1 +

S2). First, we load as raster files the Sentinel-1 images we have selected for the classification.

Load S1 images

if (S1_input | S1_S2_input){

 S1<-list.files(S1_Out_Path, recursive = TRUE, full.names = TRUE, pattern=

"VV|VH")

 S1<-S1[1:(n_images*2)]

 S1<-lapply(1:length(S1), function (x) {raster(S1[x])})

Next, the products are crop using the study area shapefile as reference and stacked together.

 # Crop and Stack

 S1<-lapply(S1, FUN=function (S1) {crop(S1, Study_area, snap="out")})

 for (i in 1:(n_images*2)) {S1[[i]]<-setExtent(S1[[i]], extent_tmpl)}

 S1_images<-stack(S1)

 S1_images

19

The result is displayed as an RGB false colour composition. The following band combination is used:
R=VV G=VH B=VV/VH

 # Plot RGB (VV-VH-VV/VH)

 plotRGB(S1_images, r=2, g=1, b=2/1, scale=maxValue(S1_images[[1]]),

stretch="lin")}

4.4.6 S2 | R Processing

This section will only be run if you have chosen Sentinel-2 as input for the classification (S2 or S1 +

S2). First, we load as raster files the Sentinel-2 images we have selected for the classification.

 # Load S2 images

if (S2_input | S1_S2_input){

 S2<-list.files(S2_path, full.names = TRUE, pattern = ".SAFE")

 S2<-S2[1:n_images]

 S2<-list.files(S2, recursive = TRUE, full.names = TRUE, pattern=bands)

 S2<-lapply(1:length(S2), function (x) {raster(S2[x])})

 head(S2)

Next, the products are crop using the study area shapefile as reference, resample to a common
spatial resolution (10 meters pixel size) and stacked together.

 # Crop - Resample - Stack

20

 S2_crop<-lapply(S2, function(S2) if(xres(S2)==10) {crop(S2, Study_area,

snap="out")} else {crop(S2, Study_area, snap="near")})

 S2_rsp<-lapply(S2_crop, FUN = function(S2_crop) {if (xres(S2_crop)==20)

{disaggregate(S2_crop, fact=2, method="")} else {S2_crop}})

 S2_images<-stack(S2_rsp)

 S2_images

The result is displayed as an RGB true/false colour composition.

 # Plot True/False color

 plotRGB(S2_images, r=3, g=2, b=1, scale=maxValue(S2_images[[1]]),

stretch="lin")

 plotRGB(S2_images, r=4, g=3, b=2, scale=maxValue(S2_images[[1]]),

stretch="lin")}

4.4.7 Stack S1 and S2

This section will only be run if you have chosen Sentinel-1 and Sentinel-2 as input for the

classification. The extent of S1 and S2 images is matched to avoid inconsistencies in the datasets. If

the Sentinel-1 images are terrain-corrected into the same Coordinate Reference System (CSR) and

pixel size as Sentinel-2, the accuracy in pixel alignment is at the sub-pixel level.

Stack Sentinel-1 and Sentinel-2 processed products

if (S1_S2_input){

 S1_images<-setExtent(S1_images, S2_images)

 S1_S2_images<-stack(S1_images,S2_images)}

 S1_S2_images

21

4.4.8 Training data

Once the Sentinel-1 products are preprocessed, we need to add the training data to our dataset. For

that, we convert to raster the training polygons.

Rasterize training data

plot(training)

training_r<-rasterize(training,eval(condition_2), field=training$Crop_ID)

names(training_r)<-"Class"

plot(training_r)

Next, we add the rasterized training data to the stack of Sentinel products (depending on the input
sensor you have selected – S1, S2, S1+S2 – you will have a different raster stack).

Add training raster to stack

S_images_t<-addLayer(eval(condition_1), training_r)

S_images_t

For visualization, the following code displays an RGB composition together with the training data.

Plot training data

if (S2_input|S1_S2_input){

 plotRGB(S2_images, r=3, g=2, b=1, scale=maxValue(S2_images[[1]]),

stretch="lin")

22

 plot(training, add=TRUE, col="orange")

} else {

 plotRGB(S1_images, r=2, g=1, b=2/1, scale=maxValue(S1_images[[1]]),

stretch="lin")

 plot(training, add=TRUE, col="orange")}

4.4.9 Random Forest preparation

Before running the Random Forest classification (See NOTE 5), we need to train the model. The

first step will be to extract the pixels identified as training pixels and save them in a dataframe.

Extract values for training pixels

training_S<-raster::extract(S_images_t, training, df=TRUE)

Next, we convert the class column to a factor (this steps allows R to read the data properly).

training_S$Class<-factor(training_S$Class)

Now, we are ready to train our Random Forest.

 NOTE 5: The Random Forest (Breiman, 2001) algorithm is a

machine learning technique that can be used for classification or

regression. In opposition to parametric classifiers (e.g. Maximum

Likelihood), a machine learning approach does not start with a

data model but instead learns the relationship between the

training and the response dataset. The Random Forest classifier is

an aggregated model, which means it uses the output from

different models (trees) to calculate the response variable.

Decision trees are predictive models that recursively split a dataset into regions by using a set of binary

rules to calculate a target value for classification or regression purposes. Given a training set with n

number of samples and m number of variables, a random subset of samples n is selected with

replacement and used to construct a tree. At each node of the tree, a random selection of variables m is

used and, out of these variables, only the one providing the best split is used to create two sub-nodes.

By combining trees, the forest is created. Each pixel of a satellite image is classified by all the trees of the

forest, producing as many classifications as number of trees. Each tree votes for a class membership and

then, the class with the maximum number of votes is selected as the final class.

23

Create and train the forest

RF<-randomForest(x=training_S[,c(2:(length(training_S)-1))], y=training_S$

Class, importance = TRUE, ntree=n_trees)

You can access the details of the Ranfom Forest model with the following code

Check the Random Forest model

RF

4.4.10 Random Forest Classification

Once our model is trained, we can run the Random Forest Classification on the remaining pixels.

Classification

LC<-predict(eval(condition_1), model=RF, na.rm=TRUE)

Use the following code to plot the output. First, we arrange the classified raster

Prepare output for plot

LC<-as.factor(LC)

LC_l<-levels(LC)[[1]]

LC_l[["Crop"]]<-c("Cotton","Others","Rice","SugarBeet","Tomato", "Water")

levels(LC)<-LC_l

Plot classification

rasterVis::levelplot(LC, col.regions=c("lightsalmon1","azure2","goldenrod1"

,"mediumseagreen","firebrick1","blue"),main=paste("RF_", if (S1_input) {"S1

"}, if (S2_input) {"S2"}, if (S1_S2_input) {"S1/S2"}, "_", n_images, "_imag

es", if (!S1_input && nchar(bands)>40) {"_B_2:9.11.12"}, if (!S1_input &&

nchar(bands)<40) {"_B_2.3.4.8.11.12"}, sep=""))

24

Now, we will save the result as GeoTIFF using an appropriate name based on the input data, number

of images and bands used. The product will be saved in the following path:

Path: /shared/Training/TAT0618_CropMapping_Seville/Processing/

Save classification as GeoTIFF

writeRaster(LC, filename = paste(

"/shared/Training/TAT0618_CropMapping_Seville/Processing/", paste("RF_", if

(S1_input) {"S1"}, if (S2_input) {"S2"}, if (S1_S2_input) {"S1_S2"},"_",

n_images, "_images", if (!S1_input && nchar(bands)>40) {"_B_291112"}, if

(!S1_input && nchar(bands)<40) {"_B_23481112"}, sep = "")),format="GTiff",

overwrite=TRUE)

4.4.11 Accuracy assessment

The last step of this exercise will be to assess the accuracy of the classification. For that, we will use

an independent validation dataset that was imported in the 4.4.2 Load AuxData section. First, we

need to rasterize the validation data.

Rasterize validation data

validation_r<-rasterize(validation,eval(condition_2), field=

validation$Crop_ID)

Next, we extract the pixel values in the rasterized validation dataset and in the classification output.

Extract values at validation pixels

test<-raster::extract(validation_r, validation, df=TRUE)

prediction<-raster::extract(LC, validation, df=TRUE)

Create a confusion matrix to compare reference and classification values and assess the accuracy.

Create confusion matrix

CM<-caret::confusionMatrix(data=as.factor(prediction$layer), reference=

as.factor(test$layer))

CM

25

The final step will store the accuracy value in a dataframe called accatable. Since the methodology

can be run with different parameters (number of images, sensor, bands used), it is important to keep

track of the result in each configuration to be able to compare the output with different settings.

Save result in dataframe

if (!exists("accatable")) {

 accatable<-as.data.frame(matrix(nrow=5, ncol=t_images, dimnames = list(c(

"S1", "S2", "S1_S2", "S2*", "S1_S2*"),as.character(seq(1,t_images)))))

 accatable[nrow, n_images]<-CM$overall["Accuracy"]} else {

 accatable[nrow, n_images]<-CM$overall["Accuracy"]}

accatable

You can now repeat the classification with different settings (number of images, bands, sensor) and

compare the performance. Go back to section 4.4.2 User input, change the parameters you want and

re-run the code. The consecutive results will be saved in accatable.

THANK YOU FOR FOLLOWING THE EXERCISE!

26

5 Further reading and resources

An Introduction to R

R Cheat Sheets

Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32, 45(1), 5–32.

Mentch, L., & Hooker, G. (2016). Quantifying Uncertainty in Random Forests via Confidence
Intervals and Hypothesis Tests. Journal of Machine Learning Research, 17(1), 1–41.
http://doi.org/10.1080/10618600.2016.1256817

FOLLOW US!!!

RUS-Copernicus website

website

RUS-Copernicus Training website

RUS Copernicus Training

@RUS-Copernicus

 RUS-Copernicus

 RUS-Copernicus

https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
https://www.rstudio.com/resources/cheatsheets/
https://twitter.com/RUS_Copernicus/
https://www.linkedin.com/groups/8623170
https://www.youtube.com/channel/UCB01WjameYMvL7-XfI8vRIA
https://www.facebook.com/RUSCopernicusService/
https://rus-training.eu/
https://rus-copernicus.eu/portal/
https://rus-copernicus.eu/portal/
https://rus-copernicus.eu/portal/
https://rus-training.eu/
https://www.facebook.com/RUSCopernicusService/
https://www.facebook.com/RUSCopernicusService/
https://twitter.com/RUS_Copernicus
https://www.linkedin.com/groups/8623170
https://www.linkedin.com/groups/8623170
https://www.youtube.com/channel/UCB01WjameYMvL7-XfI8vRIA
https://www.youtube.com/channel/UCB01WjameYMvL7-XfI8vRIA

