
PhysioGlob Marco Bellacicco – ENEA – Climate Modelling Laboratory

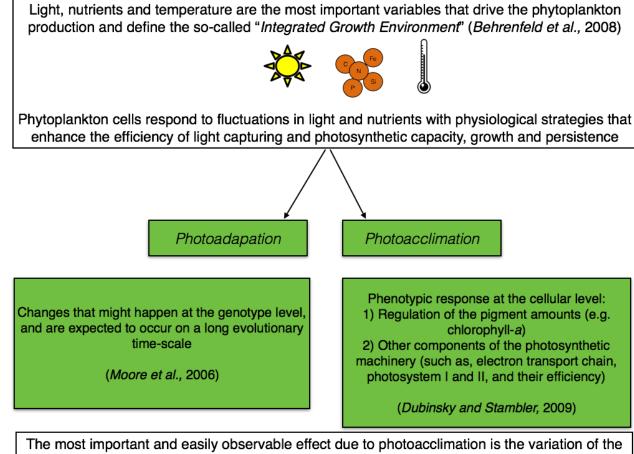
LIVING PLANET FELLOWSHIP HYDROSPHERE

General Context

Assessing the inter-annual **Physio**logical response of phytoplankton to **Glob**al warming using long-term satellite observations

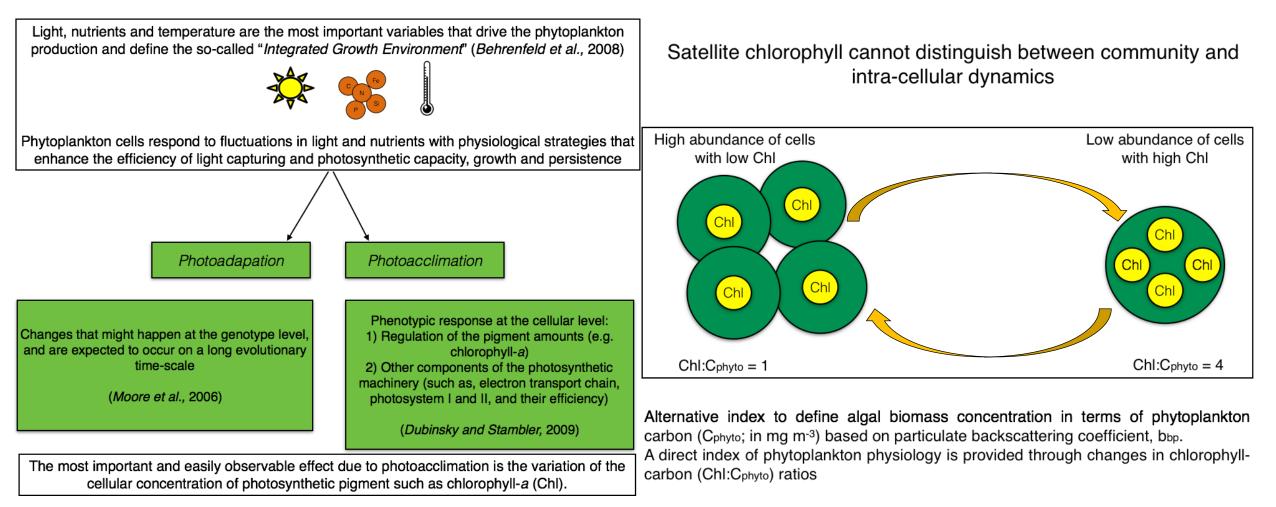
Why is important study phytoplankton from space?

- Phytoplankton produces ~50% of the primary production of the Earth
- Phytoplankton are basis of oceanic trophic chain through the photosynthesis process: fundamental actress in the **global carbon cycle**
- Phytoplankton are sentinels of changes in the ocean because they rapidly respond to environment perturbations



Goals:

- Which is the physiological response in terms of temporal oscillations – of phytoplankton to global warming/climate change on both global and regional scales?
- Which are the main drivers of the phytoplankton decreasing and physiological temporal oscillations?


What is the physiological response and how we can detect it from space?

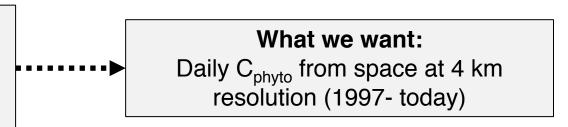
cellular concentration of photosynthetic pigment such as chlorophyll-a (Chl).

What is the physiological response and how we can detect it from space?

Backscattering-based phytoplankton carbon - C_{phyto} - from space

 $C_{phyto} = [b_{bp} (\lambda) - b_{bp}^{k} (\lambda)] \cdot SF$

 C_{phyto} = phytoplankton carbon biomass [mg C m⁻³]


b_{bp} is the total particulate backscattering retrieved by satellite [m⁻¹]

b^k_{bp} is the *background* contribution of non-algal particles to total b_{bp} (*i.e.* heterotrophic bacteria, viruses, particles aggregates)

SF is a scaling factor equal to 13000 mg m⁻² taken from literature (*Behrenfeld et al.,* 2005)

What we have:

- Daily Chl from OC-CCI at 4 km resolution (1997-today) v4.0
- Daily R_{rs} from OC-CCI at 4 km resolution (1997-today) v4.0
- In-situ C_{phyto} data for validation (*Martinez-Vicente et al.,* 2017)

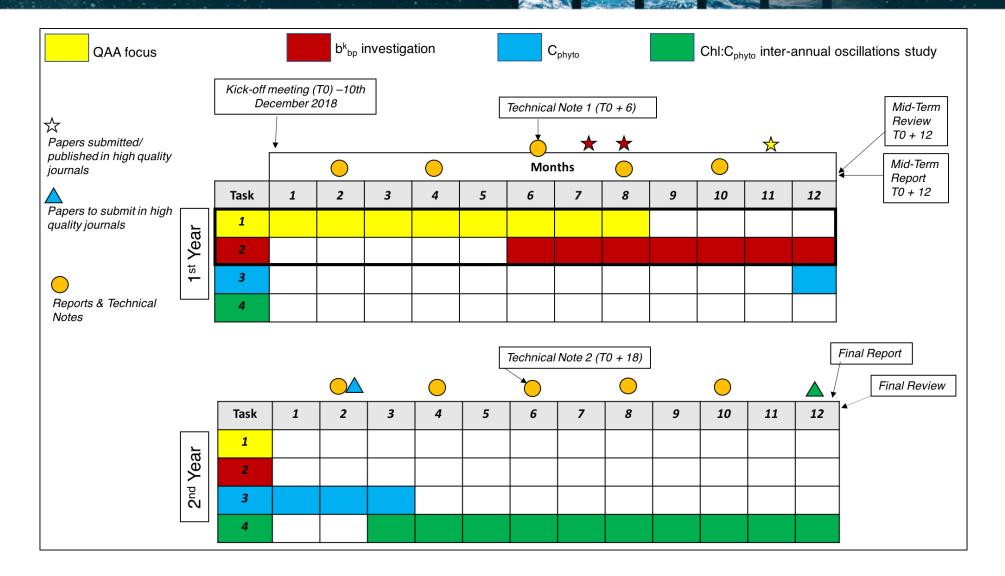
Status @MTR

Backscattering-based phytoplankton carbon - C_{phyto} - from space

$$C_{phyto} = [b_{bp} (\lambda) - b_{bp}^{k} (\lambda)] \cdot SF$$

 $C_{phyto} = phytoplankton carbon biomass [mg C m⁻³]$

b_{bp} is the total particulate backscattering retrieved by satellite [m⁻¹]


b^k_{bp} is the *background* contribution of non-algal particles to total b_{bp} (*i.e.* heterotrophic bacteria, viruses, particles aggregates)

SF is a scaling factor equal to 13000 mg m⁻² taken from literature (*Behrenfeld et al.,* 2005)

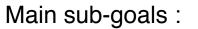
Is Quasi-Analytical Algorithm (QAA) - used in OC-CCI - a good algorithm to retrieve b_{bp} from R_{rs} ? Can we improve it? Does b^k_{bp} varies in space and time or not? Which is the best method for its computation?

Status @MTR

Main sub-goals :

٠

٠


٠

٠

Quasi-Analytical Algorithm (QAA) in OC-CCI Framework

	Step	Formula	
R _{rs} Raman-Correction inclusion: how does change the b _{bp} retrievals?	Jiep	romuta	
	0	$r_{rs}(\lambda) = R_{rs}(\lambda)(0.52 + 1.7R_{rs}(\lambda))$	
	1	$u(\lambda) = \frac{-g_0 + \sqrt{g_0^2 + 4g_1 \eta_S(\lambda)}}{2g_1} \text{with } g_0 = 0.089 \ g_1 = 0.1245$	
○ In-situ $R_{rs}(\lambda) \rightarrow$ QAA algorithm $\rightarrow b_{bp} \rightarrow$ comparison with in-situ b_{bp} data at the different λs available <u>with</u> and <u>without</u> Raman-Correction (not used in CCI context);		51	
	2	if $r_{rs}(671) < 0.0015 \ sr^{-1} \rightarrow \lambda_0 = 551 \ nm$	else $\rightarrow \lambda_0 = 671 \text{ nm}$
	-	$\gamma = \log \left[\frac{r_{rS}(443) + r_{rS}(486)}{r_{rS}(486)} \right]$	$a(\lambda_0) = a_w(\lambda_0) + 0.39 \left(\frac{R_{IS}(671)}{R_{IS}(443) + R_{IS}(486)}\right)^{1.14}$
		$\chi = \log \left(\frac{r_{r_{S}}(443) + r_{r_{S}}(486)}{r_{r_{S}}(551) + 5 \frac{\eta_{r_{S}}(671)}{r_{r_{S}}(486)} \eta_{r_{S}}(671)} \right)$	
context),		$a(\lambda_0) = a_w(\lambda_0) + 10^{h0 + h1\chi + h2\chi^2}$	
Evaluation of η by using an in-situ independent dataset;	3	$b_{bp}(\lambda_0) = \frac{u(\lambda_0)a(\lambda_0)}{1 - u(\lambda_0)} - b_{bw}(\lambda_0)$	
	4		
		$\eta = 2.0 \left(1 - 1.2 \exp\left(-0.9 \frac{\eta_{\rm X}(443)}{\eta_{\rm X}(551)} \right) \right)$	
Validation of OC-CCI $R_{rs}(\lambda)$ vs in-situ $R_{rs}(\lambda)$;	5	$b_{bp}(\lambda) = b_{bp}(\lambda_0) \left(\frac{\lambda_0}{\lambda}\right)^{\eta}$	
	6	$a(\lambda) = (1 - u(\lambda))(b_{bw}(\lambda) + b_{bp}(\lambda))/u(\lambda)$	
(**);	7	$\zeta = 0.74 + \frac{0.2}{0.8 + \eta_{S}(443) / \eta_{S}(551)}$	
OC-CCI $R_{rs}(\lambda) \rightarrow$ QAA algorithm \rightarrow	8a	$S = 0.015 + \frac{0.002}{0.6 + \eta_{\rm S}(443) / \eta_{\rm S}(551)}$	
satellite $b_{bp} \rightarrow$ comparison with in-situ	8b	$\xi = \exp\left(S(442.5 - 415.5)\right)$	
data at different λ s including the Raman-	9a	$a_{dg}(443) = \frac{a(412) - \zeta a(443)}{\xi - \zeta} - \frac{a_{W}(412) - \zeta a_{W}(443)}{\xi - \zeta}$	
Correction	9Ъ	$a_{dg}(\lambda) = a_g(443) \exp\left(-S(\lambda - 443)\right)$	
	90 10	$a_{dg}(\lambda) = a_{g}(443) \exp\left(-3(\lambda - 443)\right)$ $a_{ph}(\lambda) = a(\lambda) - a_{dg}(\lambda) - a_{w}(\lambda)$	
	Lee et al., (2011)		Ditarch at al (2010, submitted)
	Lee et ul., (2011)		Pitarch et al., (2019; submitted)

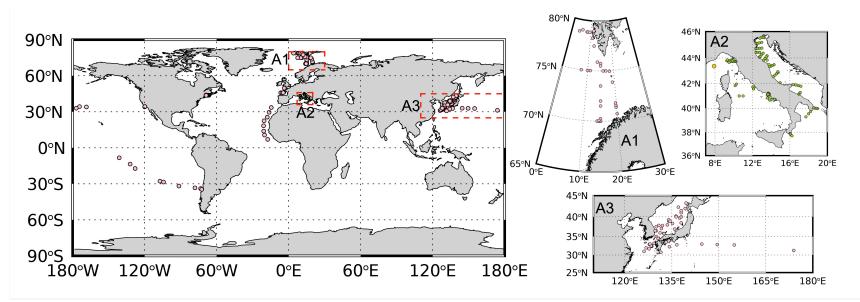
·eesa

Quasi-Analytical Algorithm (QAA) in OC-CCI Framework

Step Formula R_{rs} Raman-Correction inclusion: how $r_{rs}(\lambda) = R_{rs}(\lambda)(0.52 + 1.7R_{rs}(\lambda))$ 0 does change the b_{bp} retrievals? 1 $u(\lambda) = \frac{-g_0 + \sqrt{g_0^2 + 4g_1 \eta_S(\lambda)}}{2g_1} \quad \text{with } g_0 = 0.089 \ g_1 = 0.1245$ In-situ $R_{rs}(\lambda) \rightarrow QAA$ algorithm $\rightarrow b_{bp} \rightarrow$ 0 if $r_{rs}(671) < 0.0015 \ sr^{-1} \rightarrow \lambda_0 = 551 \ nm$ else $\rightarrow \lambda_0 = 671 \ nm$ comparison with in-situ b_{bp} data at the 2 $a(\lambda_0) = a_w(\lambda_0) + 0.39 \left(\frac{R_{IS}(671)}{R_{IS}(443) + R_{IS}(486)}\right)^{1.14}$ different λs available with and without $\chi = \log \left(\frac{\eta_{5}(443) + \eta_{5}(486)}{\eta_{5}(551) + 5 \frac{\eta_{5}(671)}{\eta_{5}(486)} \eta_{5}(671)} \right)$ Raman-Correction (not used in CCI context); $a(\lambda_0) = a_w(\lambda_0) + 10^{h0 + h1\chi + h2\chi^2}$ 3 $b_{bp}(\lambda_0) = \frac{u(\lambda_0)a(\lambda_0)}{1 - u(\lambda_0)} - b_{bw}(\lambda_0)$ Evaluation of η by using an in-situ $\eta = 2.0 \left(1 - 1.2 \exp\left(-0.9 \frac{\eta_{\rm X}(443)}{\eta_{\rm X}(551)} \right) \right)$ 4 independent dataset; 5 $b_{bp}(\lambda) = b_{bp}(\lambda_0) \left(\frac{\lambda_0}{\lambda}\right)^{\eta}$ Validation of OC-CCI $R_{rs}(\lambda)$ vs in-situ R_{rs} $a(\lambda) = (1 - u(\lambda))(b_{bw}(\lambda) + b_{bp}(\lambda))/u(\lambda)$ 6 (λ); $\zeta = 0.74 + \frac{0.2}{0.8 + \eta_{\rm S}(443) / \eta_{\rm S}(551)}$ 7 $S = 0.015 + \frac{0.002}{0.6 + \eta_{S}(443) / \eta_{S}(551)}$ OC-CCI $R_{rs}(\lambda) \rightarrow$ QAA algorithm \rightarrow 8a satellite $b_{bp} \rightarrow$ comparison with in-situ 8b $\xi = \exp\left(S(442.5 - 415.5)\right)$ $a_{dg}(443) = \frac{a(412) - \zeta a(443)}{\xi - \zeta} - \frac{a_W(412) - \zeta a_W(443)}{\xi - \zeta}$ data at different λ s including the Raman-9a Correction 9b $a_{d\sigma}(\lambda) = a_{\sigma}(443) \exp\left(-S(\lambda - 443)\right)$ 10 $a_{ph}(\lambda) = a(\lambda) - a_{do}(\lambda) - a_{w}(\lambda)$ Lee et al., (2011) Pitarch et al., (2019; submitted)

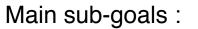
.

Main sub-goals :


Quasi-Analytical Algorithm (QAA) in OC-CCI Framework

- R_{rs} Raman-Correction inclusion: how does change the b_{bp} retrievals?
- In-situ $R_{rs}(\lambda) \rightarrow$ QAA algorithm $\rightarrow b_{bp} \rightarrow$ comparison with in-situ b_{bp} data at the different λ s available <u>with</u> and <u>without</u> Raman-Correction (not used in CCI context);
- Evaluation of η by using an in-situ independent dataset;

٠


٠

- Validation of OC-CCI $R_{rs}(\lambda)$ vs in-situ $R_{rs}(\lambda)$;
- OC-CCI $R_{rs}(\lambda) \rightarrow$ QAA algorithm \rightarrow satellite $b_{bp} \rightarrow$ comparison with in-situ data at different λ s including the Raman-Correction

- Big in-situ R_{rs} (λ) and b_{bp} (λ) dataset on a global scale (N=2881) - Satellite OC-CCI $R_{rs}(\lambda)$ v4.0

Pitarch et al., (2019; submitted)

Quasi-Analytical Algorithm (QAA) in OC-CCI Framework

Step Formula R_{rs} Raman-Correction inclusion: how $r_{rs}(\lambda) = R_{rs}(\lambda)(0.52 + 1.7R_{rs}(\lambda))$ 0 does change the b_{bp} retrievals? 1 $u(\lambda) = \frac{-g_0 + \sqrt{g_0^2 + 4g_1 \eta_S(\lambda)}}{2g_1} \quad \text{with } g_0 = 0.089 \ g_1 = 0.1245$ In-situ $R_{rs}(\lambda) \rightarrow QAA$ algorithm $\rightarrow b_{bp} \rightarrow$ 0 if $r_{rs}(671) < 0.0015 \ sr^{-1} \rightarrow \lambda_0 = 551 \ nm$ else $\rightarrow \lambda_0 = 671 \ nm$ comparison with in-situ b_{bp} data at the 2 $a(\lambda_0) = a_w(\lambda_0) + 0.39 \left(\frac{R_{IS}(671)}{R_{IS}(443) + R_{IS}(486)}\right)^{1.14}$ different λs available with and without $\chi = \log \left(\frac{\eta_{5}(443) + \eta_{5}(486)}{\eta_{5}(551) + 5 \frac{\eta_{5}(671)}{\eta_{5}(486)} \eta_{5}(671)} \right)$ Raman-Correction (not used in CCI context); $a(\lambda_0) = a_w(\lambda_0) + 10^{h0 + h1\chi + h2\chi^2}$ 3 $b_{bp}(\lambda_0) = \frac{u(\lambda_0)a(\lambda_0)}{1 - u(\lambda_0)} - b_{bw}(\lambda_0)$ Evaluation of η by using an in-situ $\eta = 2.0 \left(1 - 1.2 \exp\left(-0.9 \frac{\eta_{\rm X}(443)}{\eta_{\rm X}(551)} \right) \right)$ 4 independent dataset; 5 $b_{bp}(\lambda) = b_{bp}(\lambda_0) \left(\frac{\lambda_0}{\lambda}\right)^{\eta}$ Validation of OC-CCI $R_{rs}(\lambda)$ vs in-situ R_{rs} $a(\lambda) = (1 - u(\lambda))(b_{bw}(\lambda) + b_{bp}(\lambda))/u(\lambda)$ 6 (λ); $\zeta = 0.74 + \frac{0.2}{0.8 + \eta_{\rm S}(443) / \eta_{\rm S}(551)}$ 7 $S = 0.015 + \frac{0.002}{0.6 + \eta_{S}(443) / \eta_{S}(551)}$ OC-CCI $R_{rs}(\lambda) \rightarrow$ QAA algorithm \rightarrow 8a satellite $b_{bp} \rightarrow$ comparison with in-situ 8b $\xi = \exp\left(S(442.5 - 415.5)\right)$ $a_{dg}(443) = \frac{a(412) - \zeta a(443)}{\xi - \zeta} - \frac{a_W(412) - \zeta a_W(443)}{\xi - \zeta}$ data at different λ s including the Raman-9a Correction 9b $a_{d\sigma}(\lambda) = a_{\sigma}(443) \exp\left(-S(\lambda - 443)\right)$ 10 $a_{ph}(\lambda) = a(\lambda) - a_{do}(\lambda) - a_{w}(\lambda)$ Lee et al., (2011) Pitarch et al., (2019; submitted)

.

Main sub-goals :

Quasi-Analytical Algorithm (QAA) in OC-CCI Framework

- Evaluation of η by using an in-situ independent dataset;
- Validation of OC-CCI $R_{rs}(\lambda)$ vs in-situ $R_{rs}(\lambda)$;
- OC-CCI $R_{rs}(\lambda) \rightarrow$ QAA algorithm \rightarrow satellite $b_{bp} \rightarrow$ comparison with in-situ data at different λ s including the Raman-Correction

Step
 Formula

$$R_{rs,Corr}(\lambda) = \frac{R_{rs}(\lambda)}{1 + F(\lambda)}$$

 0
 $r_{rs}(\lambda) = R_{rs}(\lambda)(0.52 + 1.7R_{rs}(\lambda))$
 $R_{rs,Corr}(\lambda) = \frac{R_{rs}(\lambda)}{1 + F(\lambda)}$

 1
 $u(\lambda) = \frac{-R_{0}+\sqrt{g_{0}^{2}+4g_{1}r_{S}(\lambda)}}{2g_{1}}$ with $g_{0} = 0.089 g_{1} = 0.1245$
 $F(\lambda) = a(\lambda) \frac{R_{rs}(443)}{R_{rs}(555)} + \beta_{1}(\lambda)R_{rs}(555)^{\beta_{2}(\lambda)}$

 2
 $u(\lambda) = \frac{-R_{0}+\sqrt{g_{0}^{2}+4g_{1}r_{S}(\lambda)}}{2g_{1}}$ with $g_{0} = 551 nm$
 $else \rightarrow \lambda_{0} = 671 nm$

 2
 $\chi = log\left(\frac{r_{rs}(443) + r_{S}(480)}{r_{S}(551) + \frac{r_{S}(470)}{r_{S}(480)}r_{S}(571)}\right)$
 $a(\lambda_{0}) = a_{w}(\lambda_{0}) + 0.39\left(\frac{R_{rs}(671)}{R_{rs}(443) + R_{rs}(480)}\right)^{1.1}$

 3
 $b_{bp}(\lambda_{0}) = a_{w}(\lambda_{0}) + 10^{40+4n}x + h2x^{2}$
 $a(\lambda_{0}) = a_{w}(\lambda_{0}) + 0.39\left(\frac{R_{rs}(671)}{R_{rs}(443) + R_{rs}(480)}\right)^{1.1}$

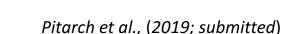
 5
 $b_{bp}(\lambda) = b_{bp}(\lambda)(\lambda)$
 $b_{bp}(\lambda) = b_{bp}(\lambda)(\lambda)/\mu(\lambda)$
 $a(\lambda_{0}) = a(\lambda_{0}) + 0.39\left(\frac{R_{rs}(671)}{R_{rs}(443) + R_{rs}(480)}\right)^{1.1}$

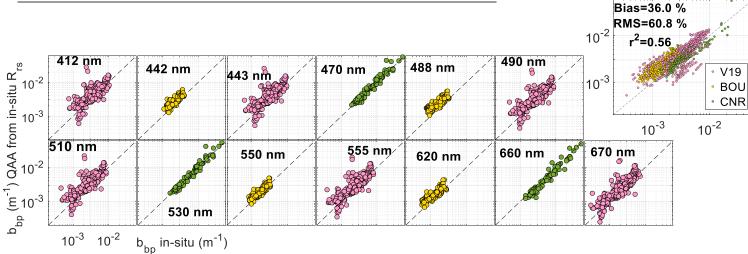
 6
 $a(\lambda) = a(1 - u(\lambda))(b_{mx}(\lambda) + b_{bp}(\lambda))/u(\lambda)$
 $f(\lambda) = a(\lambda) = a(\lambda) + \frac{0.2}{0.8 + r_{rs}(443)/r_{rs}(551)}$
 $a_{dg}(443) = \frac{a(42) - g_{d}(43)}{r_{rs}(551)}}$
 $a_{dg}(443) = \frac{a(42) - g_{d}(43)}{r_{rs}(43)/r_{rs}(551)}}$
 $a_{dg}(443) = \frac{a(42) - g_{d}(43)}{r_{rs}(551)}}$
 $a_{dg}(443) = \frac{a(42) - g_{d}(43)}{r_{rs}(55)}}$
 $a_{dg}(443) = \frac{a(42) - g_{d}(43)}{r_{rs}(55)}}$

Lee et al., (2011)

Pitarch et al., (2019; submitted)

Table 1. Statistical descriptors of the difference between the QAA-derived bbp and in-situ bbp for each dataset, without Raman Scattering compensation.

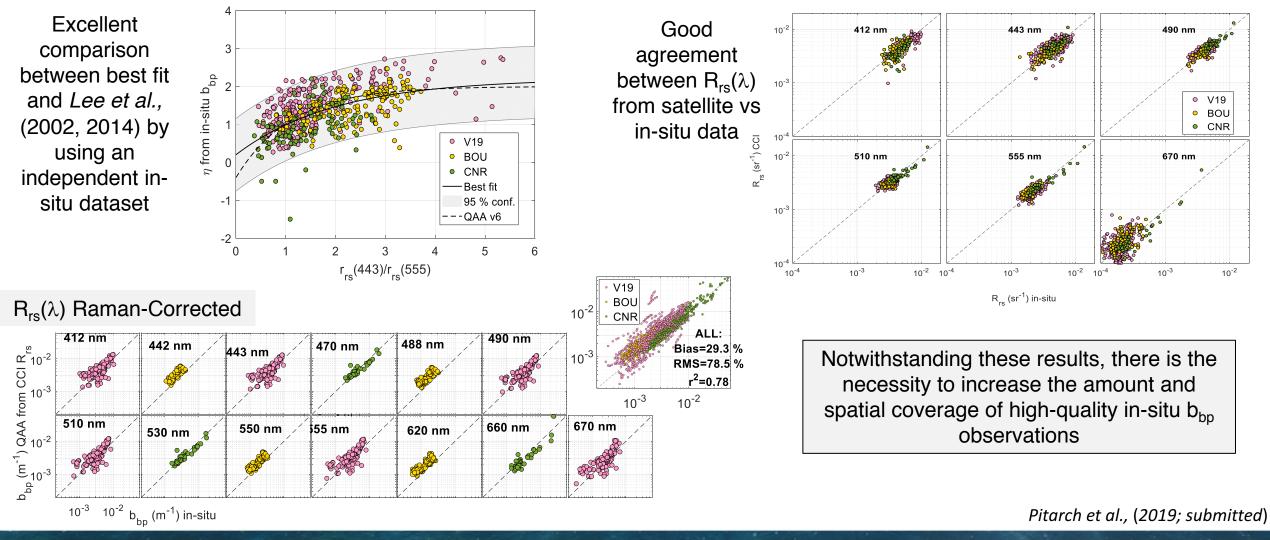

Table 2. Statistical descriptors of the difference between the bbp-QAA derived and in-situ bbp for each datas


	Band (nm)	Bias (%)	RMS (%)	r ²	Ν
V19	412	40.3	128.4	0.35	319
	443	42.7	129.4	0.37	319
	490	44.5	127.8	0.41	319
	510	45.0	127.1	0.42	319
	555	45.2	124.2	0.44	319
	670	43.1	114.2	0.47	319
	All	43.4	125.3	0.43	1914
BOU	442	44.5	50.7	0.73	172
	488	71.3	79.2	0.73	172
	550	29.0	36.5	0.78	172
	620	52.0	60.2	0.73	172
	All	49.2	58.7	0.75	688
CNR	470	11.8	25.1	0.88	93
	530	7.7	22.8	0.89	93
	660	-9.6	20.7	0.93	93
	All	3.3	22.9	0.88	279

		with Raman Scattering compensation.					
		Band (nm)	Bias (%)	RMS (%)	r ²	Ν	
Raman-Correction on in-situ $R_{rs}(\lambda)$	V19	412	28.5	94.6	0.45	319	
		443	30.7	95.0	0.47	319	
		490	32.2	93.4	0.50	319	
		510	32.6	92.8	0.51	319	
		555	32.7	90.4	0.52	319	
		670	30.7	83.1	0.54	319	
		All	31.2	91.6	0.52	1914	
	BOU	442	33.0	40.1	0.73	172	
		488	57.2	64.8	0.73	172	
		550	18.2	27.1	0.78	172	
		620	39.0	47.8	0.73	172	
		All	37.0	47.0	0.75	688	
	ĸ	470	6.5	22.6	0.88	93	
	CNR	530	2.5	21.3	0.89	93	
		660	-14.2	23.0	0.93	93	
ALL: Bias=36.0 %	1	All	3.3	22.9	0.88	279	

Raman-Correction on R_{rs} significantly reduces matchup errors with respect to in-situ b_{bp} (Bias and RMS lower than 10-

30% with respect the non-application)



η evaluation with independent in-situ dataset

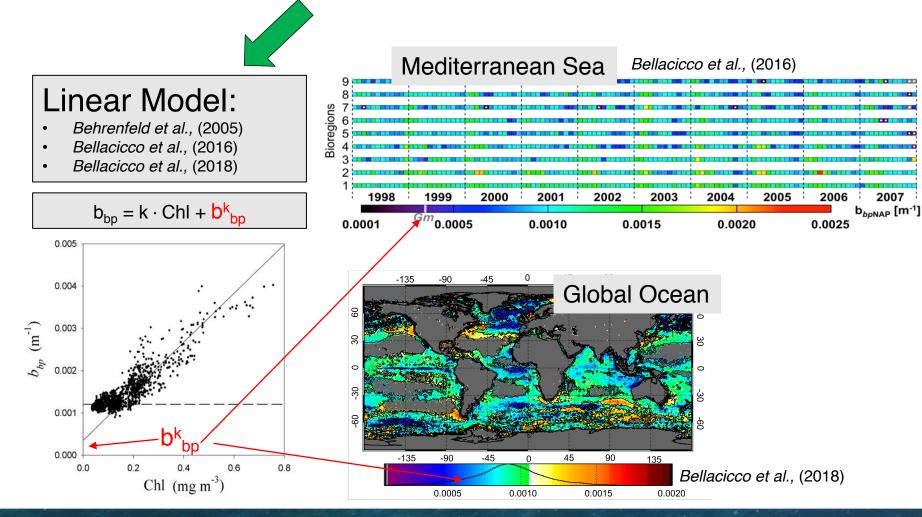
Validation of ESA OC-CCI $R_{rs}(\lambda)$

$$C_{phyto} = [b_{bp} (\lambda) - b_{bp}^{k} (\lambda)] \cdot SF$$

- 1. Focus on QAA algorithm for detection of b_{bp} from space: a possible update?
- 2. Does b^k_{bp} varies in space and time or not?
- 3. Estimation of a refined C_{phyto} from space and validation with in-situ data
- Extraction and study of the main oscillatory modes of the physiological signal (ChI:C_{phyto}) in relation to physical and climate forcing agents on a global ocean scale by using long-term satellite observations (from 1997 up to today)

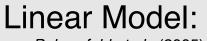
$$C_{phyto} = [b_{bp} (\lambda) - b_{bp}^{k} (\lambda)] \cdot SF$$

- 1. Focus on QAA algorithm for detection of b_{bp} from space: a possible update? Raman Correction necessity
- 2. Does b^k_{bp} varies in space and time or not?
- 3. Estimation of a refined C_{phyto} from space and validation with in-situ data
- Extraction and study of the main oscillatory modes of the physiological signal (ChI:C_{phyto}) in relation to physical and climate forcing agents on a global ocean scale by using long-term satellite observations (from 1997 up to today)

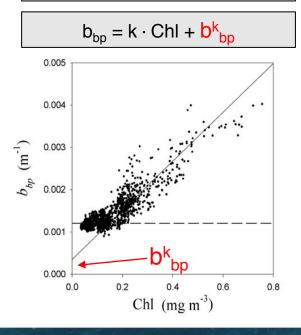


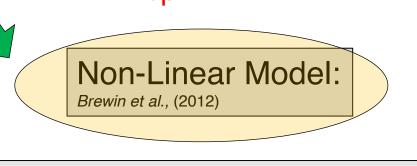
$$C_{phyto} = [b_{bp} (\lambda) - b_{bp}^{k} (\lambda)] \cdot SF$$

- 1. Focus on QAA algorithm for detection of b_{bp} from space: a possible update? Raman Correction necessity
- 2. Does b^k_{bp} varies in space and time or not?
- 3. Estimation of a refined C_{phyto} from space and validation with in-situ data
- Extraction and study of the main oscillatory modes of the physiological signal (ChI:C_{phyto}) in relation to physical and climate forcing agents on a global ocean scale by using long-term satellite observations (from 1997 up to today)



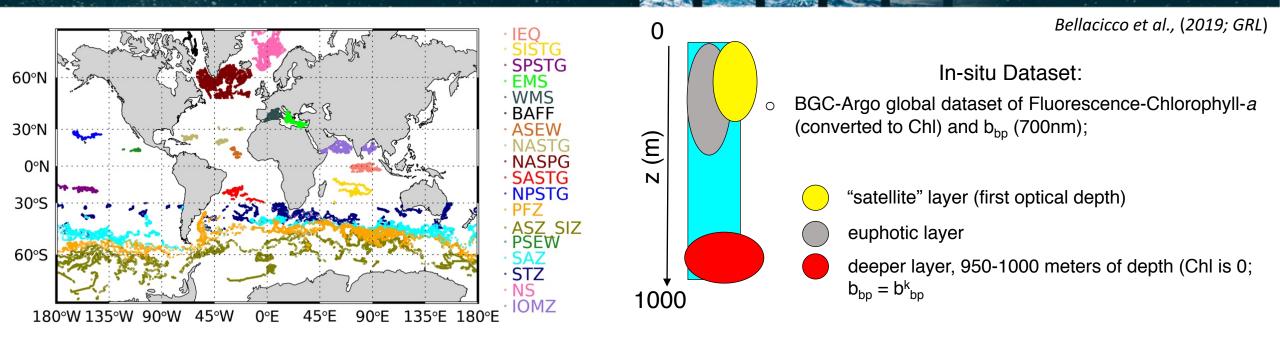
Background backscattering coefficient of NAP (bkbp)



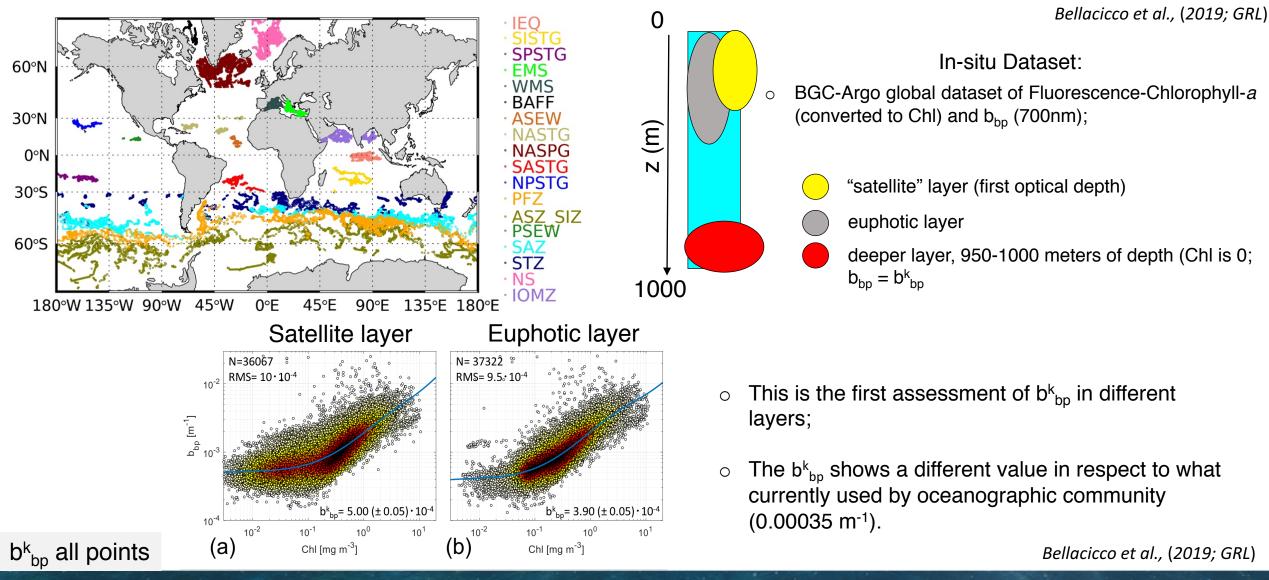


Background backscattering coefficient of NAP (bkbp)

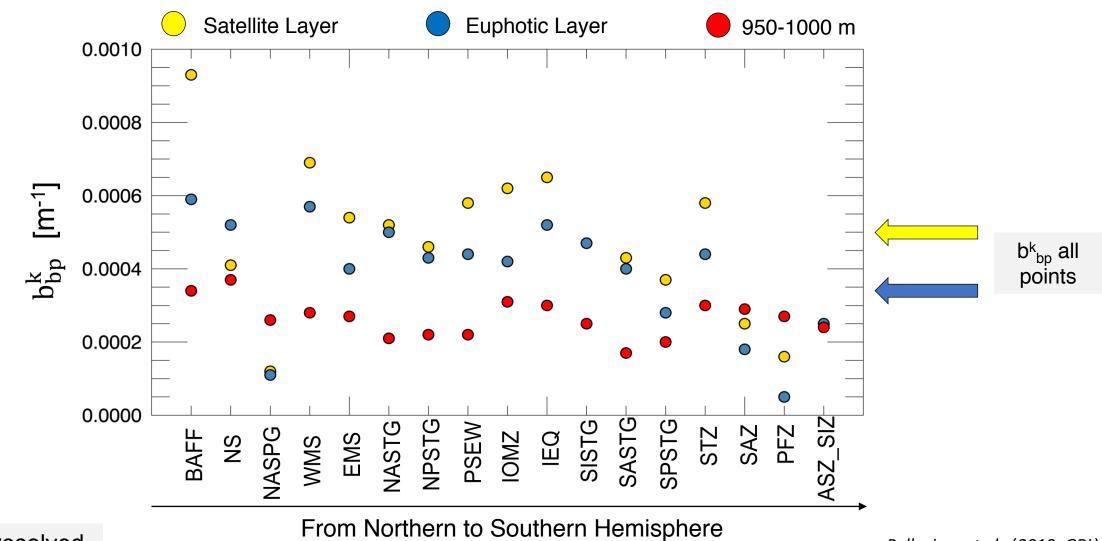
- Behrenfeld et al., (2005)
- Bellacicco et al., (2016)
- Bellacicco et al., (2018)

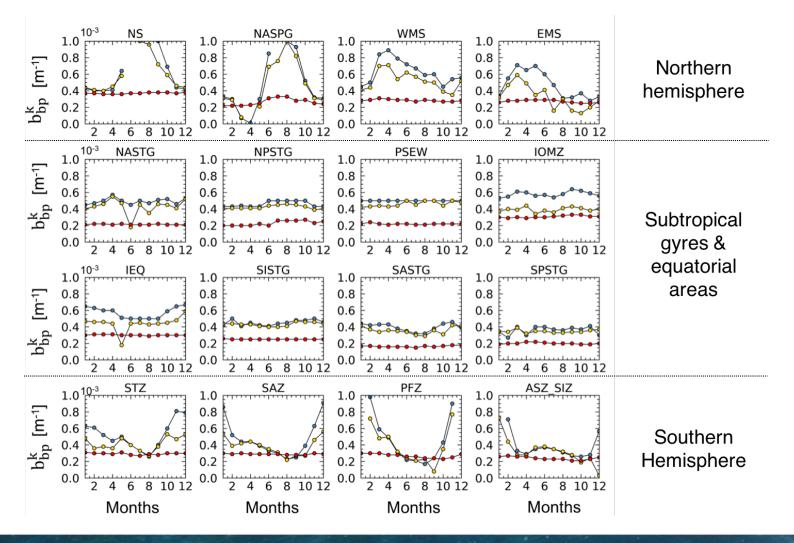


 $\mathbf{b}_{bp} = \mathbf{k} \cdot \mathbf{ChI} + \mathbf{c} \cdot [\mathbf{1} - \mathbf{e}^{(-d \ \mathbf{ChI})}] + \mathbf{b}^{\mathbf{k}}_{bp}$


Why?

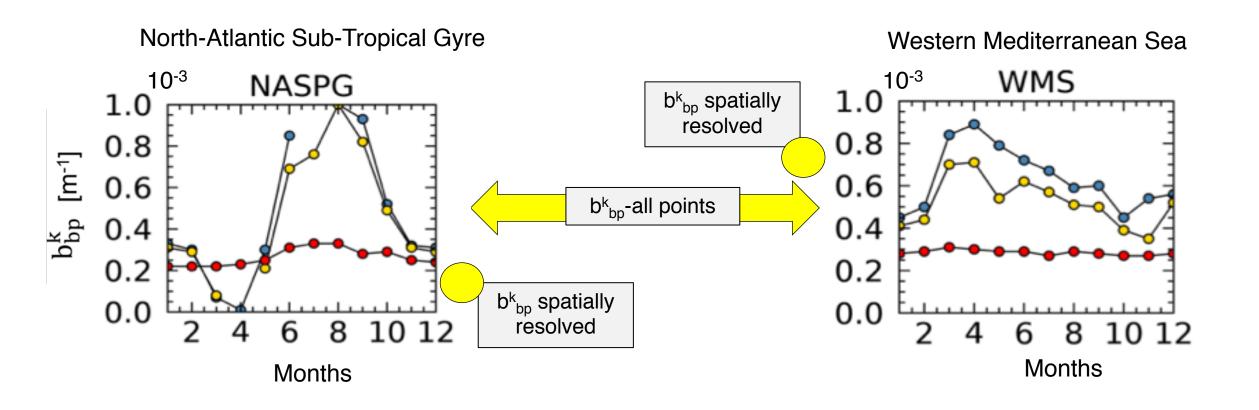
- The model takes into account phytoplankton populations (small and large phytoplankton cells (say *c* and *d* coefficients);
- $\circ~$ The model overcomes the limits of a simple linear correlation between the Chl and b_{bp};
- The model works also in case of oligotrophic waters (low Chl; the subtropical gyres).





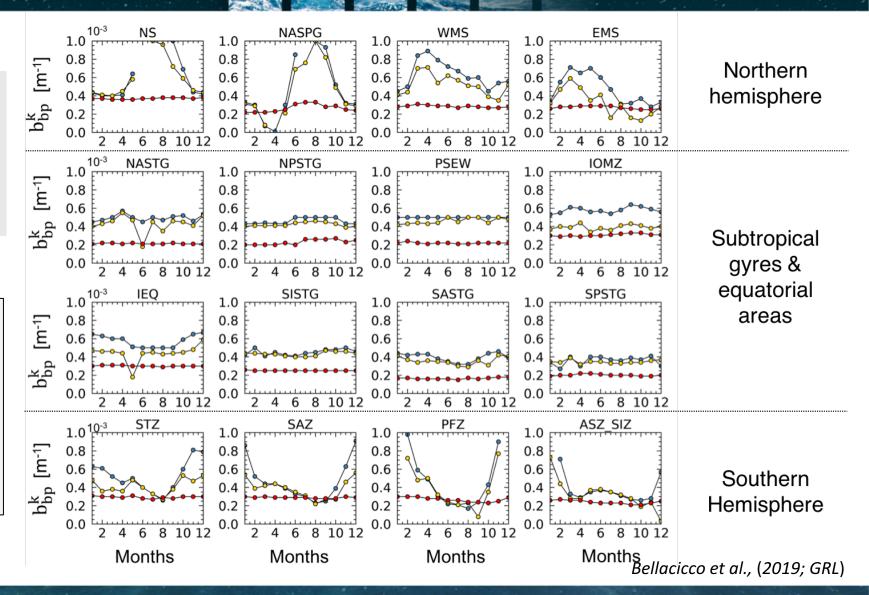
bk spatially-resolved

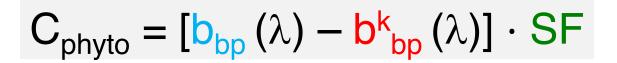
Bellacicco et al., (2019; GRL)


bk_{bp} spatially and temporal resolved

Bellacicco et al., (2019; GRL)

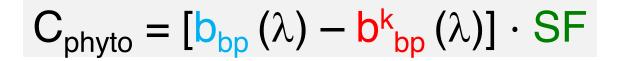
b^k_{bp} spatially and temporal resolved


Bellacicco et al., (2019; GRL)

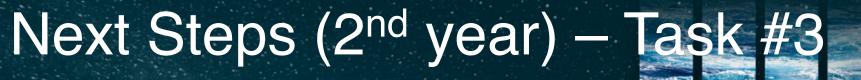

b^k_{bp} varies in space and time capturing seasonal cycle at mid- and high latitudinal regions

b^k_{bp} spatially and temporal resolved

Inclusion of its spatio-temporal variability in C_{phyto} is mandatory



- 1. Focus on QAA algorithm for detection of b_{bp} from space: a possible update? Raman Correction inclusion
- 2. Does b^k_{bp} varies in space and time or not?
- 3. Estimation of a refined C_{phyto} from space and validation with in-situ data
- Extraction and study of the main oscillatory modes of the physiological signal (ChI:C_{phyto}) in relation to physical and climate forcing agents on a global ocean scale by using long-term satellite observations (from 1997 up to today)


- 1. Focus on QAA algorithm for detection of b_{bp} from space: a possible update? Raman Correction inclusion
- 2. Does b_{bp}^{k} varies in space and time or not? $b_{bp}^{k}(\lambda) = f$ (lat, lon, time) by using a non-linear model between Chl and b_{bp}
- 3. Estimation of a refined C_{phyto} from space and validation with in-situ data
- Extraction and study of the main oscillatory modes of the physiological signal (ChI:C_{phyto}) in relation to physical and climate forcing agents on a global ocean scale by using long-term satellite observations (from 1997 up to today)

Next Steps (2nd year) – Task #3

$$C_{phyto} = [b_{bp} (\lambda) - b_{bp}^{k} (\lambda)] \cdot SF$$

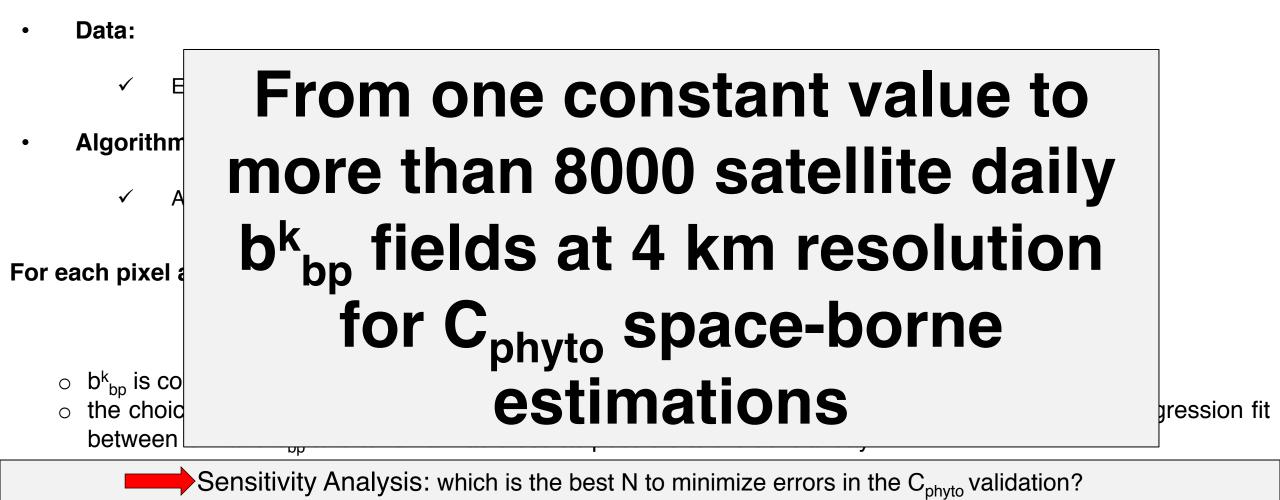
$$C_{phyto} = [b_{bp} (\lambda) - b_{bp}^{k} (\lambda)] \cdot SF$$

- Data:
 - \checkmark ESA OC-CCI daily ChI and R_{rs} (λ) v4.0 time-series at 4 km resolution for the period 1997-2018
- Algorithms:
 - Application of QAA to R_{rs} (λ) for b_{bp} retrievals including the Raman-Correction on R_{rs} (λ)

For each pixel and day

 C_{phyto} (lat, lon, day) = [b_{bp} (lat, lon, day) – b_{bp}^{k} (lat, lon, day)] · SF (equal to 13000)

where:

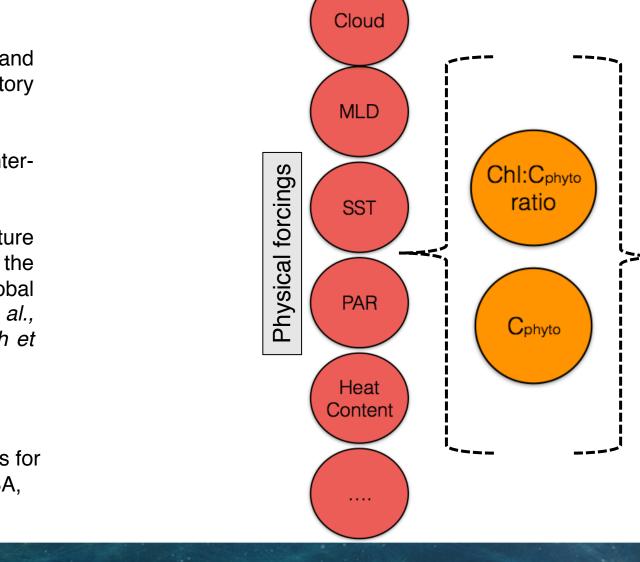

- $\circ~b^k_{~bp}$ is computed using (2N+1) days centered at each single day &
- the choice of N is based on trade-off between the need of having enough data for the non-linear regression fit between ChI and b_{bp} and to remain as close as possible to the central day

Sensitivity Analysis: which is the best N to minimize errors in the C_{phyto} validation?

$$\mathbf{C}_{\mathsf{phyto}} = \left[\mathbf{b}_{\mathsf{bp}}\left(\lambda\right) - \mathbf{b}_{\mathsf{bp}}^{\mathsf{k}}\left(\lambda\right)\right] \cdot \mathsf{SF}$$

LIVING PLANET FELLOWSHIP HYDROSPHERE

Next Steps (2nd year) – Task #4


Main sub-goals:

- to classify components of single, and coupled, time series into trends, oscillatory patterns, and noise;
- to evaluate similarities among the interannual variabilities of parameters;
- to understand the spatio-temporal structure associated with oscillatory modes in the biological/physiological proxies and global ocean physical fields following *Ghil et al.*, (2002), *Marullo et al.*, (2011) and *Groth et al.*, (2017).

How?

Application of advanced statistical methods for time-series analysis such as SSA, M-SSA, Wavelet Analysis

LIVING PLANET FELLOWSHIP

ENSO

QBO

NPO

NAO

Climate

indexes

Conclusions @MTR

- 1. Assessment of QAA for b_{bp} retrievals with in-situ and satellite data
- 2. Evaluation of which is the best model for b_{bp}^{k} computation: linear vs non-linear approaches
- 3. Demonstration of b_{bp}^{k} spatio-temporal variability and importance of its inclusion in C_{phyto} computation $\rightarrow b_{bp}^{k}$ is thus not a single constant value but will be a series of daily maps at 4 km resolution.
- 4. Production of daily b_{bb} (443 nm, 555 nm) time-series at 4 km resolution with Raman Correction on R_{rs} included.

Expected Outputs & Papers for 2nd year

- 1. Daily C_{phyto} satellite product, validated with in-situ dataset after the selection of the best method for daily b_{bp}^{k} satellite fields at 4 km resolution from 1997 until today \rightarrow *it can be very important tin order o complement Chl data in phytoplankton studies from space*
- 2. Chl:C_{phyto} time-series \rightarrow it can be potentially impactful also for operational biogeochemical model where Chl:C_{phyto} is usually a single constant value thus not taking into account its variability
- One paper about the C_{phyto} dataset (*e.g.* Earth System Science Data or Remote Sensing of Environment, similar) and al least one paper on inter-annual ChI:C_{phyto} oscillations modes in relation to physical forcings (*e.g.* temperature, heat content, nutrients, clouds, MLD, etc...) and climate indexes (*e.g.*, QBO, NAO, NPO, ENSO).
- 4. Conferences: Ocean Sciences Meeting @San Diego (USA); Ocean from Space @Venice (Italy); Ocean Optics @Norfolk (USA) LIVING PLANET FELLOWSHIP HYDROSPHERE

Publications – 1st year

PhysioGlob papers published/submitted:

- Bellacicco, M., Vellucci, E., Scardi, M., Barbieux, M., Marullo, S and D'Ortenzio, F. (2019). Quantifying the impact of linear regression model in deriving bio-optical relationships: the implications on ocean carbon estimations. *Sensors*, 19, 3032.
- Bellacicco, M., Cornec, M., Organelli, E., Brewin, R., Neukermans, G., Volpe, G., Barbieux, M., Poteau, A., Schmechtig, C., D'Ortenzio, F., Marullo, S. Claustre, H. and Pitarch, J. (2019). Global variability of optical backscattering by non-algal particles from a Biogeochemical-Argo dataset. *Geophysical Research Letters*, 46 (16), 9767-9776.
- Pitarch, J., Bellacicco, M., Organelli, E, Volpe, G., Colella, S., Vellucci, V and Marullo, S. Retrieval of particulate backscatter using field and satellite radiometry: assessment of the QAA algorithm (*submitted*).

Other papers published/submitted/in preparation:

- Bellacicco, M., Vellucci, V., D'Ortenzio, F. and Antoine, D. (2019). Discerning dominant temporal patterns of bio-optical properties in the northwestern Mediterranean Sea (BOUSSOLE site). *Deep-Sea Research: Part I*, 148, 12-24.
- Mansour, K., Decesari, S., Bellacicco, M., Marullo, M., Santoleri, R., Bonasoni, P., Facchini, M.C., Ovadnevaite, J., Ceburnis, D., O'Dowd, C. and Rinaldi, M. Particulate methanesulfonic acid over the central Mediterranean Sea: relationship with phytoplankton activity and source region identification (*submitted*).
- Mansour, K., Decesari, S., Bellacicco, M., Marullo, M., Santoleri, R., Bonasoni, P., Facchini, M.C., Ovadnevaite, J., Ceburnis, D., O'Dowd, C. and Rinaldi, M. Linking Oceanic Biological Activity to Aerosol Chemical Composition and Cloud-Relevant Properties over the North Atlantic (*in preparation*).

THANKS FOR THE **ATTENTION!**

Collaborations with:

