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Example how basic knowledge is useful: inertial oscillations

> Theory developed in 1800s
rotations of water particles with frequency of Coriolis

parameter; in our latitude period about 14 h, circle
2-3 km

> First observations in the sea made in the Baltic

Gustaf d
by Gustafson and Kullenberg (1936) ustarson an

Kullenberg (1936)

» ,Consumed" formerly mainly by PhysOcean, as
generators of mixing
(e.g. Krauss, 1981, erosion of thermocline)

» Now important for ,right" advection-mixing

balances in ecosystem, sediment dynamics, ice
dynamics etc models
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Next:
- Flows in deep channels and straits
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Water exchange and mixing in connected rotational basins

Volume transport over
__________ Ekmanlayer | | |rotatingsill
: (Whitehead et al., 1974)
| r1.2
| Q_gh
1 —
2f

where £'=g

halocline

P2 P

P

rotational control, if
gh
S

Gotland
Basin

W>&:%:

e wind transport in Ekman layer = compensation flow below

H,;
» vertical transport due to continuity  w,(z,7) = 1 I(q;y —q:_y)dz has to be balanced by
4T : halocline erosion

= )]
) N o .
— ¢ mixing in the halocline is mainly due to internal waves, K = “
Bornholm Basin N,
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Flow dynamics in the channels: north from Kriegers Flak

Down-channel speed and density
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Rotational sub-critical gravity current

Frictional effects (Ekman number =~ 1):

O transverse Ekman circulation and interfacial jet

O downward bending of isopycnals on the right-hand slope
» asymmetric density pattern

O strong entrainment on the right-hand slope

~

‘
: ! Umlauf, L., & Arneborg, L. (2009). Dynamics of
{ rotating shallow gravity currents passing

through a channel. Part | & Il. Journal of
Physical Oceanography
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Flow dynamics in the channels: Stolpe / Stupsk

ZHURBAS ET AL.: UNSTEADY OVERFLOW IN THE SLUPSK FURROW

Sub-critical eddy-producing gravity current in a wide channel, including friction effects

Current maps at 60 m Topography and transects

*18%00 16°30 17°00' 17°30" 18°000 E 18°30'

Variety of cross-channel density
patterns (pinching and downward
bending of isopycnals) is caused by
meandering of the gravity current
and mesoscale eddies — mostly above-
halocline cyclones and intrahalocline
anticyclones

16"30 1700 1730 E 1800'
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Flow dynamics in the channels: Northern Kvark Strait (1)

Two channels between the Bothnian Sea and the Bothnian Bay

Transects of density from Sto N
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Flow dynamics in the channels: Northern Kvark Strait (2)

Along-channel currents (positive north) (a) and with first EOF mode subtracted (b)

1 hour average Vv (Norm/south) and isopyonsis 1002.4:0.08:1003.9

T TR : Intermittency of flow
regimes
,,n '

(1) barotropically blocked
regime

45% of time

(2) two-layer regime
(3) continuously stratified
regime

velocity [ms™)

55% of time, mainly
hydraulically controled

velbcity [m s™)

1312 2012 27/12 13/01 date 2004

date 2004 (Fr ~ 1)
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Flow dynamics in the western Gulf of Finland
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~ We learned from the flows in deep channels

- and straits:

~ + high variability of flow patterns and dynamical regimes

* flow control by rotational hydraulics, but also by eddies and
fronts

Next*
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Examples of eddy manifestations in remote sensing
11 July 2005 | 17 July 2009

N 0.5 10 20 km
R

Distributed by Kongsberg satellite services

500 559

Latitude (N)

17 18 19 20 21 22 18300

Longitude (E
MODIS Terra quasigtru(e) color image at optical image from RI from ASAR Envisat
250m resolution using bands 1 (red), 4 radiometer ETM+
(green), and 3 (blue). Landsat-7
Kahru & Elmgren (2014) Ginzburg et al (2015)
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Spiral eddies from SAR images
Normalized number of eddies per 6 x 6 mile grid cell 2009 - 2011

40

» Spiral eddies 5-8 km mainly
cyclonic

» Thousands of eddy detections
within a year

» ,Black eddies” - visualized due
to surfactant films

» ,White eddies” — visualized
due to wave/current
interactions
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Karimova(2012), Karimova and Gade (2016)
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14 shlps working 2 weeks in a 20 x 40 mile box

Phytoplankton spring bloom started in the cores

of mesoscale eddies

249.04 .86 CEPTH 0-80 M DISTANCE 320 MILES
SALINITY MIN= 7.55 MAX=10.01 CI= .40
- CR CS CT Cu CY CW CX cY
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Eddies generated during upwelling relaxation
POM model with 0.125 miles grid step, used for summer 2006

605

N ¥ n:u,__u\: Lo NN TC . fe
Temperature s baaltiand | L atali W 2 ldentified features
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Long-living mesoscale eddy in the Gulf of Finland

Eddy background is variable, still contrasts in eddy core are distinct over about 1 month.

Diameter about 10 km, travel distance about 80 km over 33 days = translation speed 2-3 cm/s.

Transects of temperature and

salinity over 1 month
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| We learned from eddies and fronts:

3‘ » variety of eddy types: short-living ( < few days) spiral and T-like

3 submesoscale eddies, long-living ( > few weeks) mesoscale
eddies

* eddies are important for momentum and mass transfer

 knowledge about eddies still fragmentary, good detection
methods not yet ready

~ Next:
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Effects of waves on ocean dynamics

a) Significant wave height b) Surface Stokes drift
1 &

va

Northerly storm on 22 July 2013 « wave-dependent momentum flux: surface

9) Wevaloreaking Alta roughness and drag coefficient for wind stress,
release of momentum to ocean by breaking
waves

Standard ocean modelling approach prescribes wind
and wave effects as a function of wind only.

Drift (m/s)

Specific wave effects on ocean dynamics include:

*  Stokes-Coriolis drift in non-linear waves

¢) Normalized momentum flux to ocean

Alfa (*)

* wave-dependent mixing: induced by breaking
waves

Alari et al (2016)
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Effect of waves on temperature during upwelling

a) MODIS IMAGE b) CTRL c) WAVERUN
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- Alari et al (2016) )
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Turbulence generation by surface waves (Stokes drift)

) ) ) ) Microstructure observations in the Bornholm Basin
Stokes production of turbulent kinetic energy in . | snwenen

the mixed layer is of the same order of magnitude
as the shear production and must therefore be
included in mixed layer models.

Presently most of the models count only the shear
production (friction velocity) due to wind speed,
not the effects of waves.

TKE dissipation rate (in W kg?)
Kantha, L., Lass, H. U., & Prandke, H.

(2010) a) observed §
' b) modeled with wave breaking and Stokes drift P . a
. . - .. » 4 75
c) modeled with wind dependence only DS TS RS ST . ISV T 1) K
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Wave products for the Baltic Sea

The spatial resolution and coverage of altimetry and SAR wave products

Coverage and resolution Sentinel-1SAR TerraSAR-X
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Low-resolution altimetry
wave products/algorithms
and open ocean SAR wave
mode products not good in
the Baltic
— anumber of islands and
staggered coast line
— limited fetch resulting in
relatively small and short
waves
Sentinel-1 SAR data could
be basis for much more
detailed , dedicated Baltic”
wave information than
altimetry products.
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* SAR based wave fields as accurate as from
SAR wave prOdUCt accuracy altimetry, but SAR coverage is better

* The value of high-res wave field information

o

Altimetry SAR retrieved from SAR imagery in the Baltic Sea
, spr - gnd in the German Bight has been
o | Jason—1 £ Sl = 0.33 P
o S| r=oss - = demonstrated:
5% | entries = 117 o2 o
g £ . E | number of buoys =11 . - Pleskachevsky, Rosenthal, Lehner (2016) ISPRS J Photogramm.
Ex B, o © o ,O; P »Meteo-marine marine oarameters for highly variable environment
§ !w ® 5 S A o = in coastal regions from satellite radar imagery “
H = g [ Do . v“ . . . . . e
"’2_ = E E 5 fi‘o ] —  Rikka; Uiboupin; Alari. (2017). ) Int. J. Remote Sens. , Applicability
EE 2 ;z;’,&"o"@o ¥ 7 of SAR based wave retrieval for wind-wave interaction analysis in
8 F odesc S’ 1 the fetch-limited Baltic*
T On e, O 00 . . .
_ : : : 2@? E —  Rikka, Pleskachevsky, Uiboupin, Jacobsen (2017) IGARSS
SWH,satelita ] E 6@%3302’“ 8 ] Proceedings, ,,Sea state parameters in highly variable
Kudryavtseva & Soomere (2016) B TT L3 g eopaebpmseraece ] v v v environmentof Baltic Sea fro m satellite radar images”
0

o

1 2 3
monsinnd g 1 High-res SAR based wave fields need to be
assimilated into forecast models
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' We learned from wave effects:

‘ waves are important for currents, mixing, TS patterns
~ « wave models already quite good, still observations needed, e.g.
for data assimilation
e wave products from SAR seem to have high value

Baltic ocean dynamics and remote sensing:

a number of new RS products would be highly valuable, for

e better understanding of complex natural processes
-+ improving quality and reliability of ocean forecasts
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