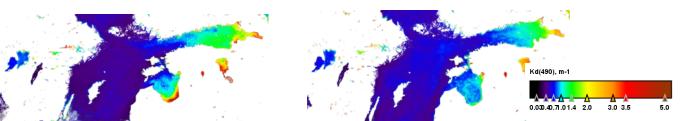
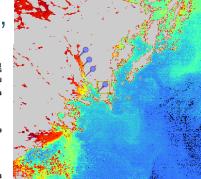
Bridging the divide between satellite and shipborne techniques for joint Baltic Sea water quality monitoring

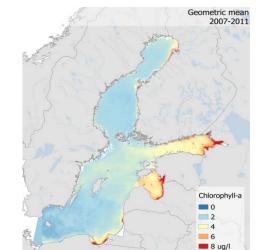
Jenni Attila

Brockmann Consult: Kerstin Stelzer, Martin Böttcher, Tonio Fincke, Carsten Brockmann Plymouth Marine Laboratory: Stefan Simis EMI: Tiit Kutser

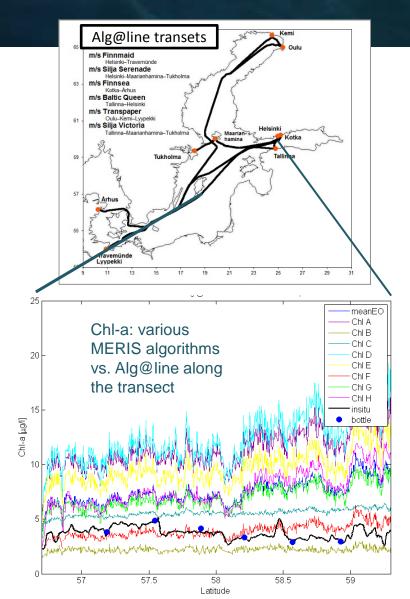

SYKE: Kari Kallio, Seppo Kaitala, Hanna Alasalmi, Eeva Bruun, Vesa Keto, Pirkko Kauppila, Vivi Fleming-Lehtinen, Sampsa Koponen **Stockholm University:** Susanne Kratzer



Earth observations (EO)

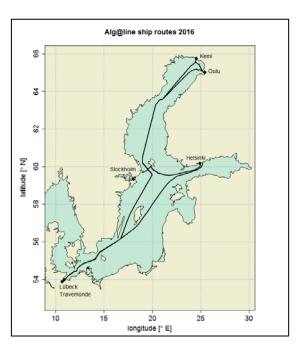

- Since late 20th century, studies have been made on the use of EO instruments to detect
 - chlorophyll-a (e.g. Kratzer et al., 2000, 2008, Kratzer and Vinterhav, 2010, Vepsäläinen et al. 2005, Koponen et al., 2007, Bértran-Abaunza et al., 2013, 2014, Harvey et al., 2015, Attila et al., 2013, 2017, Ligi M. 2017)
 - cyanobacteria blooms (e.g. Kahru et al. 2000, 2007, Kahru & Elmgren 2014, Reinart and Kutser, 2006, Kutser et al. 2006, Verlin et al., 2014)
 - SPM (Beltrán-Abaunza et al., 2014, Kyryliuk & Kratzer, 2017, sub.), turbidity (Attila et al., 2013)
 - transparency/Secchi depth/Kd490 (Kratzer et al., 2003, Kallio et al., 2006, Kratzer et al., 2008, Alikas et al., 2015, Alikas & Kratzer 2017)

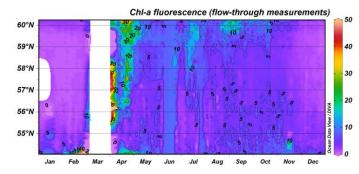
Earth observations (EO)


- Before the launch of S3, MERIS has been the frame of reference for algorithm development
- OLCI on-board Sentinel3 can continue reliable water quality estimation
 - Daily overpass
 - Coverage for the whole Baltic Sea at a glance
 - Optimal spectral configuration for developing algorithms for chlorophyll-a
 - 300m resolution

EO-algorithms for the Baltic

- Baltic Sea with its unique optical properties is especially challenging for EO algorithm development.
 - Absorption dominated, CDOM increases towards the northern and easternmost parts of the Baltic Sea (extreme Case II)
 - Finnish coastal aCDOM(400) range from about 0.6 1/m (south) to 5 1/m (river estuaries in north) (Ylöstalo et al., 2016)
 - Bio-optics of the open Baltic Sea (Simis et al., 2017)
- Not all EO water quality algorithms and instruments work properly for the Baltic Sea
- Algorithm development is important
 - using all available data sources
 - accounting the spectral and radiometric characteristics of OLCI





Alg@line

- Ship-of-opportunity (SOOP) for research and monitoring, coordinated by SYKE (<u>seppo.kaitala@ymparisto.fi</u>)
 - Sweden: SMHI, Estonia: EMI, MSI, Germany: IOW
- Automated measurement system onboard merchant ships
 - Flow-through fluorometer measurements and water samples
- Real-time measurements
 - Temperature, salinity, turbidity, CDOM fluorescence
 - Chlorophyll a and phycocyanin fluorescence
 - photosynthetic pigments present in phytoplankton cells
- Water samples
 - Chlorophyll a, turbidity, nutrients
 - Phytoplankton species composition
- Data for international marine data infrastructures (e.g. EMODnet, Copernicus Marine Service, ...)

-> EO algorithm development based on water samples and flow-through calibrated with the samples

Alg@line and MERIS chl-a during cyanobacteria blooms

0.1

14.7.2010

EO ChI-a [µg/]

EO Chl-a (FUB) Chl-a Alg@line

57.5

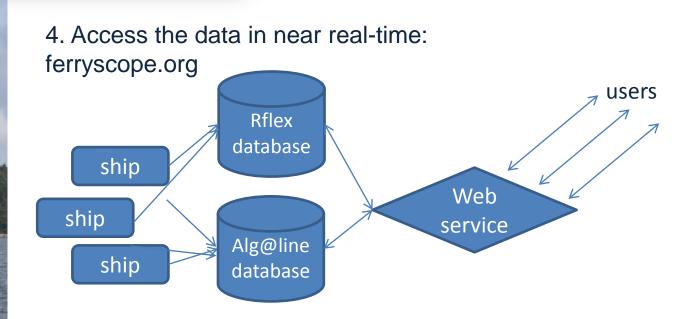
58

0.7 **MERIS FUB** 0.6 Alg@line, 5m depth Fykosyaniini Fykosyaniini 14.7.2010 0.3 0.2 0.1 14.7.2010 Chl-a MERIS(FUB) vs. Alg@line 100r 80 Chl-a, [μg/l] 60 40 20 0 55.5 56 57 Latitude

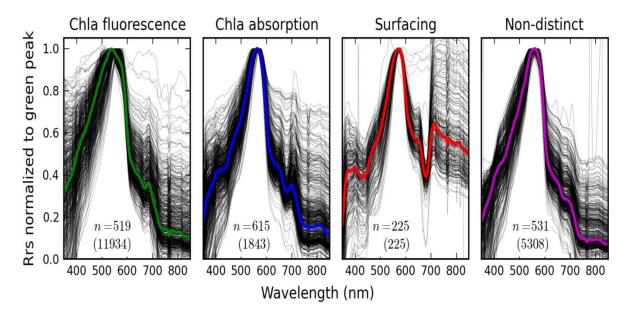
FerryScope project

- BONUS/FerryScope strived for improving water quality assessment of the Baltic Sea by combining satellite data, shipborne measurements and modelling.
- Co-operation between companies and research institutes: Brockmann Consult GMBH (GER), Estonian Marine Institute, Finnish Environment Institute (SYKE), Plymouth Marine Laboratory (UK).
- Preparation for the joint use of Sentinels and shipborne data with Baltic specific spectral inversion algorithm SIOCS (The Sensor-Independent Ocean Colour Processor)
- Hydrolight simulations based on a bio-optical database (Simis et al., 2017).

PML Plymouth Marine Laboratory



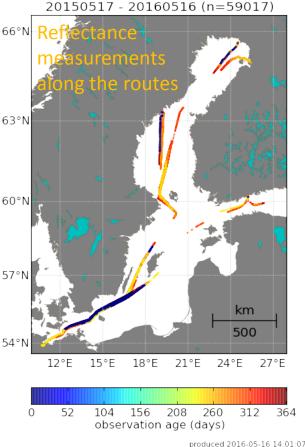
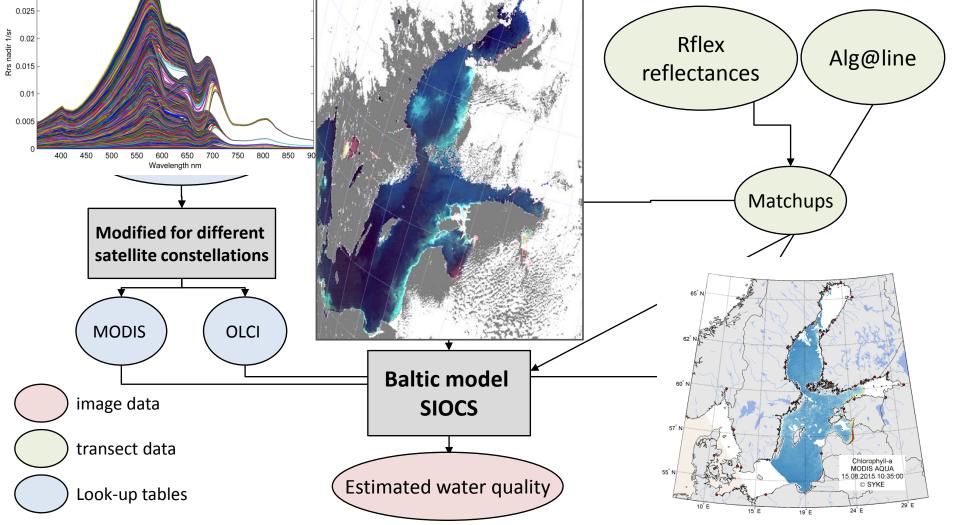
Autonomous measurement system on the deck of the ship

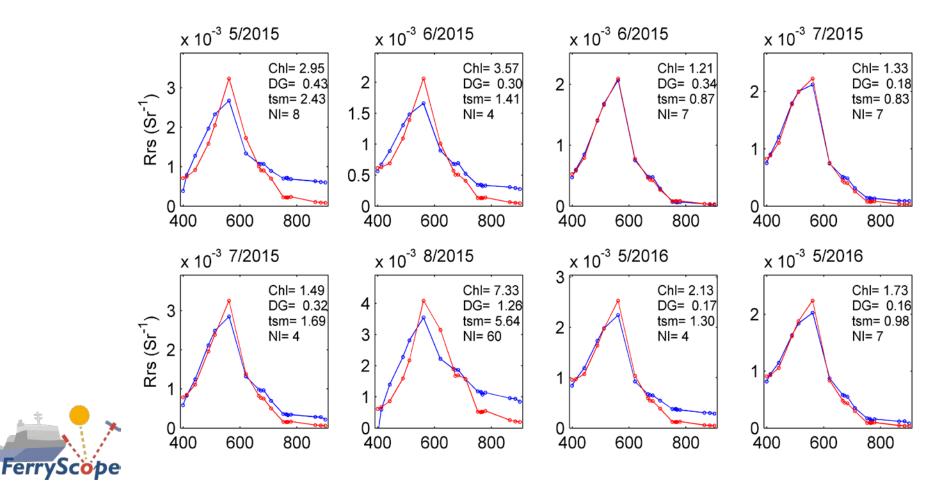

FINNMAID

- 1. Hyperspectral reflectance sensors on Algaline ships
- 2. Automated data transmission to the database
- 3. Quality assured reflectance data

Reflectance measurements

- Most of the measurements on the ship are discarded due to weather conditions and ship tilting (Simis and Olsson, 2013)
- After filtering, different types and behavior of algae can⁶³ be distinguished from ship observations, such as

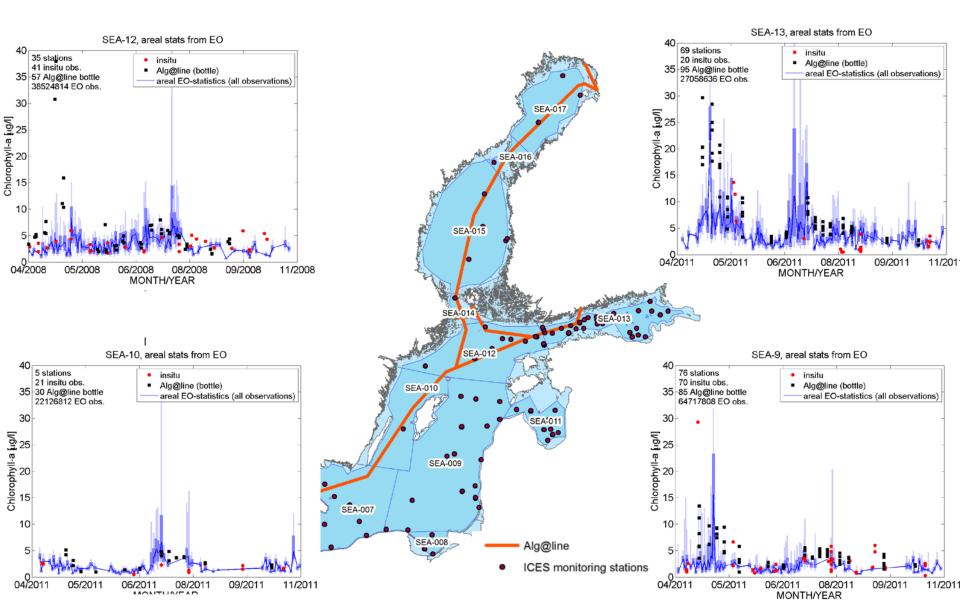



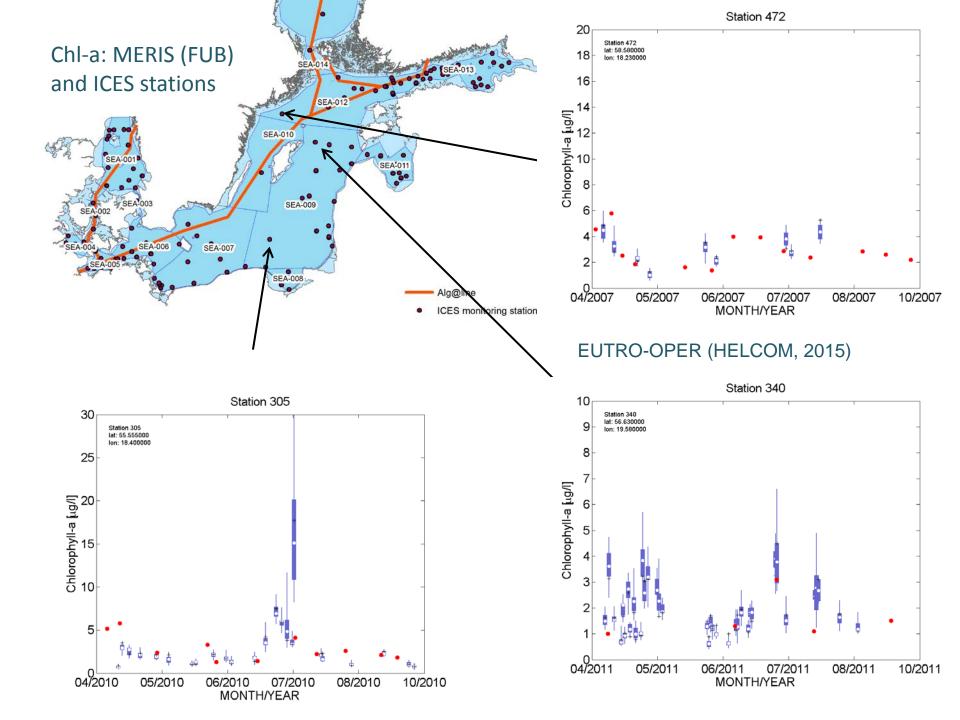

Image by S. Simis, unpublished data

Modelling chain: Combination of data sources with Baltic SIOCS model Pre-modelled data & satellite & on-line ship observations

Rflex reflectance data for algorithm development

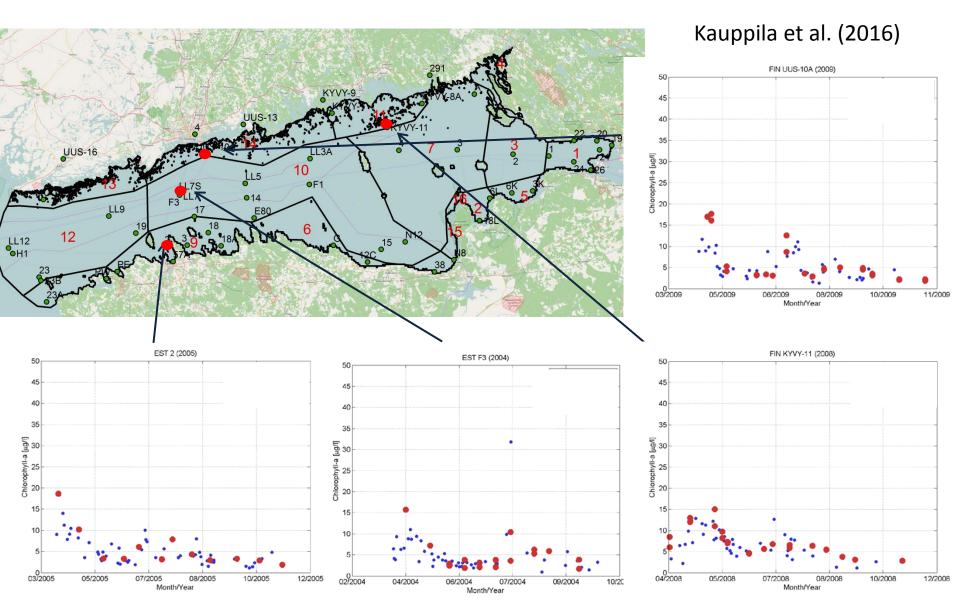
 Baltic Sea specific SIOCS model using shipborne reflectance data with OLCI spectral configuration.

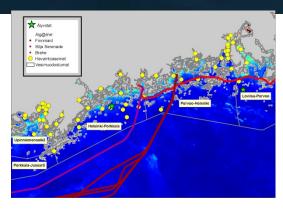



Accurate estimation of chl-a using MERIS and OLCI?

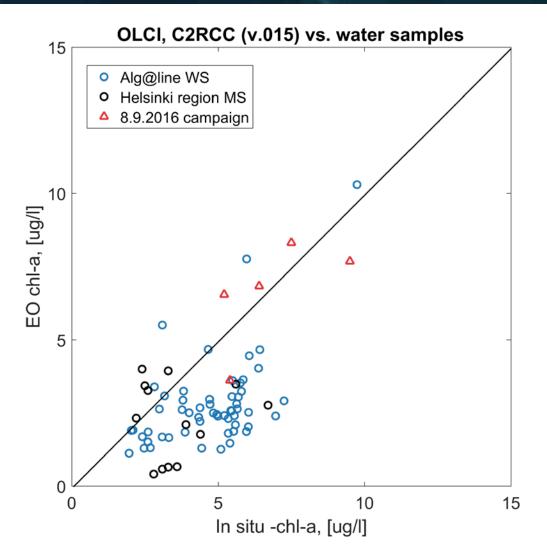
- Chl-a results achieved with MERIS have been validated throughout the Baltic Sea in comparison to various data sources
 - Coastal comparisons (e.g. Kratzer et al., 2008, Bértran-Abaunza et al., 2014, Harvey et al., 2015, Attila et al., 2013, 2017)
 - HELCOM open water assessment areas & ICES dataset (EUTRO-OPER, 2015)
 - Gulf of Finland: trilateral GoF-dataset (Kauppila et al., 2016)
- The differences in time, depth, number and spatial extent of observations account for much of the discrepancy between various monitoring methods.
- We look forward to using OLCI with improved spectral configuration in comparison to MERIS.
- Part of OLCI data is in commissioning phase, the improvement of the calibration is ongoing.

HELCOM assessment areas, EO (MERIS) () ICES MS (•), Alg@line (=), (EUTRO-OPER, HELCOM, 2015)

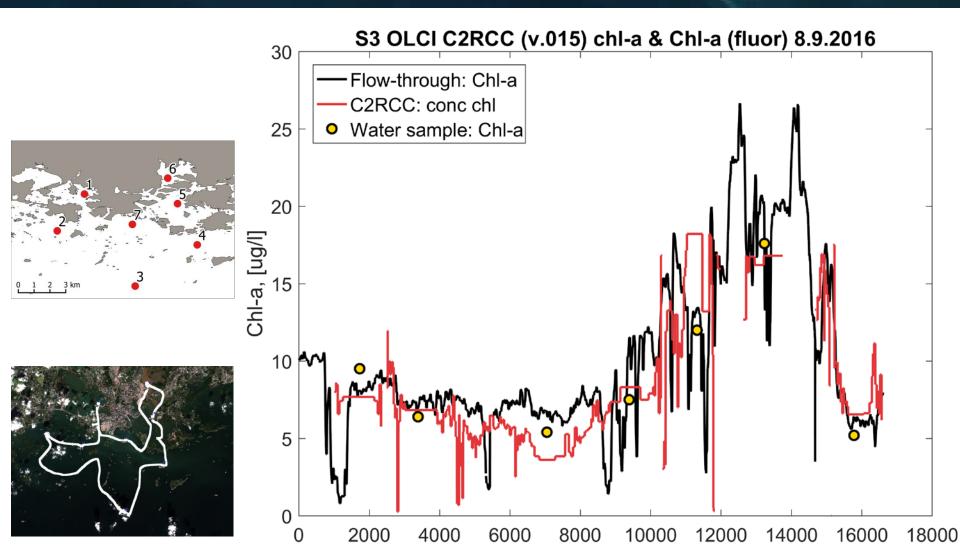



Comparison of EO and GoF trilateral dataset

OLCI C2RCC comparison against various field data

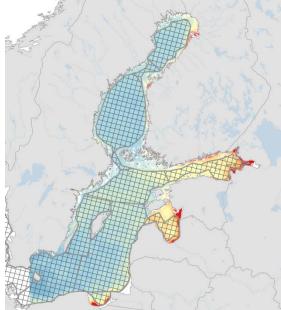

Validation data 2016 (analysed so far):

Alg@line water samples


- From mid May to August
- Area: Gulf of Finland

Coastal monitoring stations near Helsinki

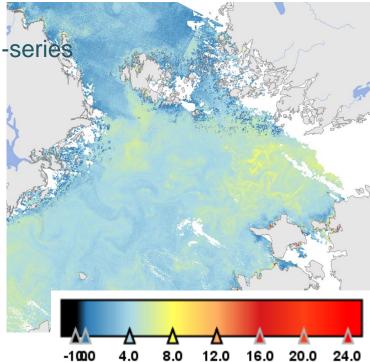
Field campaign (8.9.2016)



Coastal vessel flow-through, water samples & OLCI

Outlook and future aspects

- A lot of autonomous data is being collected for the Baltic Sea by instruments onboard ships.
- Combining data from different sources overcomes the shortcomings of individual systems – via modelling in the future.
 - EO: clouds, inaccuracies caused by atmosphere
 - Rflex: measurement errors by weather, movements of the ship, bubbles in water, spatially and temporally limited to the shipping routes
- Algorithm evolution in parallel to product development for users is important.
- Cost-effective and reliable methods for monitoring and assessment are needed
 - National and regional assessment requirements (EU MSFD & WFD).
 - Important for defining actions and measures for protecting the Baltic Sea.
 - Regional and independent validation with in-situ data could help to enlarge the acceptance of EO data for reporting to EU.


Future considerations

- ESA Copernicus Sentinel-series instruments are ensured and we can exploit them at least until 2030.
- Baltic Sea specific EO algorithms are needed to fully exploit

OLCI 4.7.2016

- the automated instrumentation on ships
- new spectral configurations by the Sentinel-series instruments

How can we benefit further from the already established systems and knowledge by institutes and companies in the Baltic countries?

References

Attila, J. Kauppila, P. Kallio, K., Alasalmi, H., Bruun, E., Keto, V., (2017). Assessment of coastal WFD water bodies using MERIS/OLCI type of instrument, Remote Sensing of Environment.

Ligi, M., Kutser T., Kallio K., Attila J., Koponen S., Paavel B., Soomets T., Reinart A., (2017). Testing the performance of empirical remote sensing algorithms in the Baltic Sea waters with modelled and in situ reflectance data. *Oceanologia.*

Attila J., Koponen S., Kallio K., Lindfors A., Kaitala, S., Ylöstalo, P. (2013). MERIS Case II water processor comparison on coastal sites of the northern Baltic Sea, *Remote Sensing of Environment*, 128, 138–149.

Kauppila, P., Eremina, T., Ershova, A., Maximov, A., Lips, I., Lips, U., Alasalmi, H., Anttila, S., Attila, J., Bruun, J.E., Kaitala, S., Kallio, K., Keto, V., Kuosa, H., & Pitkänen, H., (2016). Distribution and trends of phytoplankton chlorophyll a and surface blooms. In: Eutrophication in the Gulf of Finland - report, Eds. Raateoja M., Setälä O. *Reports of the Finnish Environment Institute, ISBN* 978-952-11-4577-3. ISBN 978-952-11-4578-0 (PDF).

Koponen, S., Attila J., Pulliainen J., Kallio K., Pyhälahti T., Lindfors A., Rasmus K., Hallikainen M., (2007). A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland *Continental Shelf Research*, *27*,*2*, *228-244*.

Vepsäläinen, J., Pyhälahti, T., Rantajärvi, E., Kallio, K., Pertola, S., Stipa, T., Kiirikki, M., Pulliainen, J. (2005). The combined use of optical remote sensing data and unattended flowthrough fluorometer measurements in the Baltic Sea. *International Journal of Remote Sensing,26* (2), 261-282.

Verliin, A. et al. (2014). List of developed and proposed indicators for the assessment of marine biodiversity in the Baltic Sea. In: **Martin, G., Fammler, H., Veidemane, K., Wijkmark, N., Auniņš, A., Hällfors, H., Lappalainen, A. (eds.)** The MARMONI approach to marine biodiversity indicators : Volume II : List of indicators for assessing marine biodiversity in the Baltic Sea developed by the LIFE MARMONI Project. Tallinn, University of Tarto. P. 23-51. *Estonian Marine Institute Report Series;* 2014, 16. ISBN 978-9985-4-0873-5 (print), 978-9985-4-0874-2 (pdf), ISSN 1406-023X.

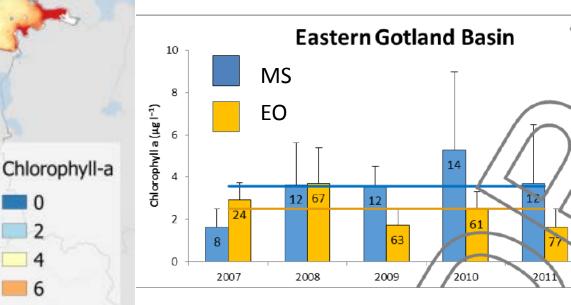
Beltrán-Abaunza, J.M., Kratzer, S., & Brockmann, C. (2014). Evaluation of MERIS products from Baltic Sea coastal waters rich in CDOM. *Ocean Science*, 10, 377–396. DOI: 10.5194/os-10-377–2014.

Harvey, E.T., Kratzer, S., & Philipson, P. (2015). Satellite-based water quality monitoring for improved spatial and temporal retrieval of chlorophyll-a in coastal waters. *Remote Sensing of Environment*, 158, 417–430. DOI: 10.1016/j.rse.2014.11.017.

Kratzer, S., & Vinterhav, C. (2010). Improvement of MERIS level 2 products in Baltic Sea coastal areas by applying the Improved Contrast between Ocean and Land processor (ICOL) – data analysis and validation. *Oceanologia*, 52(2), 211–236.

Kratzer, S., Brockmann, C., & Moore, G. (2008). Using MERIS full resolution data to monitor coastal waters – a case study from Himmerfjärden, a fjord-like bay in the northwestern Baltic Sea. *Remote Sensing of Environment*, 112, 2284–2300.

Kratzer, S., Harvey, E.T., & Philipson, P. (2014). The use of ocean colour remote sensing in integrated coastal zone management: A case study from Himmerfjärden, Sweden. *Marine Policy*, 43, 29–39.


Reinart, A., & Kutser, T. (2006). Comparison of different satellite sensors in detecting cyanobacterial bloom events in the Baltic Sea. *Remote Sensing of Environment*, 102, 74–85. Simis, S.G.H., Ylöstalo, P., Kallio, K., Spilling, K., & Kutser, T. (2016). Contrasting seasonality in optical-biogeochemical properties of the Baltic Sea. Accepted for PLOS ONE. Ylöstalo, P., Seppälä, J., Kaitala, S., Maunula, P., & Simis, S. (2016). Loadings of dissolved organic matter and nutrients from the Neva River into the Gulf of Finland – biogeochemical composition and spatial distribution within the salinity gradient. *Marine Chemistry*, 186, 58– 71. 2007-2011

8 ug/l

Products prepared with MERIS era for users: Finnish national, HELCOM, EU

Geometric mean S3/OLCI: Continuation of accurate assessment information on the state of the Baltic Sea

> EUTRO-OPER (HELCOM, 2015)

