From the deep ocean to the coast:

Open issues for UK marine science in the Atlantic & the role of spaceborne Earth Observation

Christine Gommenginger

National Oceanography Centre, UK

With grateful thanks to many colleagues at NOC and elsewhere

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

Content of this talk

A journey around the Atlantic Ocean

- from the tropics to the poles
- from the deep ocean to the coast
- from large to small scales
- As we go, we'll point out:
 - Open questions & issues
 - Ongoing activities and opportunities for satellite Earth Observations
- Summary & Recommendations

National Oceanography Centre

Source: Hugo Ahlenius, UNEP/GRID-Arendal, http://maps.grida.no/go/graphic/world-ocean-thermohaline-circulation1

The AMOC and its role in climate

noc.ac.uk

Ocean Heat Transport

Courtesy of David Smeed, NOC

NERC SCIENCE OF THE ENVIRONMENT

The AMOC and its role in climate

Ocean Heat Transport

Courtesy of David Smeed, NOC

RAPID 26°N: Measuring the Atlantic Meridional Overturning Circulation *in situ*

In situ observations to measure the *full-depth* large-scale ocean circulation across 26°N.

Courtesy of Eleanor Frajka-Williams, NOC

Oceanography Centre

The AMOC and its role in climate

NATURAL ENVIRONMENT RESEARCH COUNCIL

noc.ac.uk

SCIENCE O

RAPID 26°N: Measuring the Atlantic Meridional Overturning Circulation *from space*

Proxy from altimetry reproduces the interannual variability of the measured MOC

Direct estimates of deep (3000-5000m) transports from GRACE match in situ.

How: Applies geostrophic balance to detrended GRACE bottom pressure at west & east endpoints of 26°N.

Landerer et al. (2015) GRL

- Meric Srokosz: 'Observing the AMOC from space', Thursday 17:00 Conference Room
- Eleanor Frajka-Williams et al.: 'Altimetry & Gravimetry for estimating the MOC', Poster #4

Observing the subpolar MOC

- Large international project to observe the subpolar MOC
 - UK: NOC, SAMS, Uni Oxford, Uni Liverpool
 - US, Canada, Germany, France, NL, China

Courtesy of Penny Holliday, NOC

• AMOC array in place since 2014, funded to 2020 (seeking extension to 2025)

noc.ac.uk

NFRC

ENVIRONMEN

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

North Atlantic & Arctic

Wikimedia Commons

- AMOC expected to slow down over next decade
 - North Atlantic freshening (IPCC AR5)
- Influence of Arctic sea ice decline
 - export of freshwater to Atlantic
 - But Nordic pathways are complex and difficult to observe
 - coastal Greenland current, Fram Strait, Canadian archipelago
- Changing North Atlantic air-sea fluxes
 - subject to large variability on multiple scales, including changes in salinity, temperature and wind stress
 - Open questions
 - relative roles of air-sea fluxes and ocean circulation in North Atlantic ?
 - Mechanisms driving convection & water mass transformation in Nordic seas ?

Simon Josey: 'Changing Air-Sea Freshwater Fluxes and Ocean Salinity: From Wet gets Wetter to the Big Fresh Blob', Thursday 12:00 <u>Conference Room</u>

CLASS: Climate Linked Atlantic Sector Science

- UK Marine Science National Capability programme (2018-2023)
 - Lead: Angela Hatton, NOC
- Underpinning Activities
 - Sustained Ocean Observations
 - Numerical Modelling
 - Technology Innovation
- Science Programme
 - Hydrological cycle and Atlantic Ocean Salinity
 - Atlantic carbon sink
 - Seafloor Disturbance
 - Ecosystem functioning and services
- Academic Engagement & training

40⁰N

40°S

8005

120°E 180°W 60°F 120°W 60°W C_{anth} storage – column inventory Sea Mammal Research Jnit

Sea surface salinity

[PSU]

37 36

35

34

33

32

The Southern Ocean

- Disproportionately important for heat and anthropogenic carbon uptake by the ocean
 - Accounts for ~40% of oceanic uptake of anthropogenic carbon and >75% of the heat uptake (IPCC AR5)
- The Southern Ocean is the world's biggest data desert ...
- ... and it is notoriously hard to get right in models
- Buoyancy fluxes and surface winds directly impact ocean circulation
 - Wind stress plays major role as driver of Antarctic Circumpolar Current and upwelling of deep waters

National

Oceanography Centre

British

Met Office

Winds in the Southern Ocean

- Decadal trends in wind stress can change by up to 40% depending on storminess and wind fluctuations (Lin et al., J. Clim, 2018)
 - non-linear dependence on wind speed

National Oceanography Centre

Winds in the Southern Ocean

- Decadal trends in wind stress can change by up to 40% depending on storminess and wind fluctuations (Lin et al., J. Clim, 2018)
 - non-linear dependence on wind speed
- Importance of better and more frequent wind observations near the ice edge
 - e.g. using new space solutions like GNSS-Reflectometry
 - Here, showing surface reflectivity from the GNSS-R sensor on UK TechDemoSat-1 (one satellite)

Courtesy Giuseppe Foti, NOC

Hurricanes & storms

- Atmosphere-ocean feedbacks
- Better & more frequent high wind data needed to improve forecasts

Extreme sea level at the coast

Statement from WCRP/IOC Sea Level 2017 Conference, New York:

"Major immediate climate-related impacts of sea-level rise occur due to the increased likelihood of extreme sea-level events arising from the **combination of high tides, storm surges and waves on top of higher sea levels.** This increased frequency of extreme sea-level events, and increased impact of storm surges and waves, is already being observed, including routine flooding on spring tides at some locations. Hence it is important to **understand present and future occurrence of extreme conditions, in addition to mean sealevel rise.**"

noc.ac.uk

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNC

Coastal sea level, storm surges & waves

noc.ac.uk

Trends in relative sea level from tide gauges 1970-2015 (Permanent Service Mean Sea Level)

NERC SCIENCE OF TH

Trends in absolute sea level from altimetry 1993-2015 (ESA Climate Change Initiative)

Quantifying coastal sea level change

- Better altimeter data in the coastal zone
 - Continued improvements of instrument performance (e.g. SAR mode altimetry on Cryosat-2 & Sentinel-3)

- better corrections (e.g. tides, wet tropospheric delay, sea state bias)
- Consistent multi-mission datasets for altimeter sea level AND waves
- New approaches to separate natural variability and trends by exploiting the different characteristics of tide gauges, satellite altimetry and models
- New multi-parameter methods that combine satellite altimetry with other spatial datasets and high-resolution models

Courtesy of F. Calafat, NOC

Next generation high-resolution models

1.5km Coupled Ocean-Wave-Land-Atmosphere

Courtesy of J. Holt & J. Polton, NOC

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

noc.ac.uk

NERC SCIENCE OF THE ENVIRONMENT

St Louis Senegal

> Senegal River

St Louis

Artificial breach

Sentinel-2A 11 May 2018

Artificial breach in Langue de Barbarie sand bar to mitigate river flood risk tripled the tidal range & increased exposure of city to storms & sea level rise

Val Byfield: 'ESA EO4SD: Marine & Coastal Resources Management, EO-derived information for Blue Economies', Thursday 17:15 Seminar Room

Summary & Recommendations

- The Atlantic Ocean is characterised by a multitude of complex processes between the ocean, atmosphere, cryosphere and land on multiple spatial and temporal scales
- Open questions include:
 - AMOC, its variability and future changes
 - the relative role of air-sea fluxes and ocean circulation changes on the AMOC
 - Impact of changes at high latitudes, especially buoyancy & winds
 - Impact of high-energy processes on short temporal and spatial scales
- Significant efforts are underway in the UK and internationally to observe and model large-scale long-term processes in the Atlantic

noc.ac.uk

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNC

Summary & Recommendations (2)

- Satellite Earth Observations offers many opportunities to complement existing observing and modelling efforts
 - Particular relevance of new satellite measurements of salinity, winds and coastal sea level and waves
- Combining satellite datasets with in situ and model data could help to quantify natural variability and trends
- New generation of high-resolution coupled models offer new opportunities to fully exploit the information content of new high-resolution satellite data from multiple sensors

National Oceanography Centre NATURAL ENVIRONMENT RESEARCH COUNCIL

