# TerraSAR-X and TanDEM-X: Mission Status and Outlook

#### Irena Hajnsek

Microwaves and Radar Institute, German Aerospace Center Institute of Environmental Engineering, ETH Zürich irena.hajnsek@dlr.de





# TanDEM-X / TerraSAR-X Mission Status

#### TerraSAR-X (launch 15 June 2007):

- Operational phase since 07.01.2008
- Provision of high-resolution SAR data to science and commercial users
- <u>Arbitrary ordering of acquisitions</u> with different imaging modes and polarizations of individually chosen regions of interest
- Either TSX or TDX is used for TerraSAR-X acquisitions

#### TanDEM-X (launch 21 June 2010):

- <u>TerraSAR-X</u> <u>a</u>dd-o<u>n</u> for <u>D</u>igital <u>E</u>levation <u>M</u>easurement acquisition of raw data for a global DEM within 3 years
- Acquisition of raw data for a high resolution global DEM within 3 years
- Close formation flight to establish a bi-static SAR interferometer
- Global DEM acquisition since 12.12.2010
- <u>Preplanned acquisitions</u> for the global DEM

Manifold technical and operational challenges...

# TerraSAR-X-add-on for Digital Elevation Measurements

Launched: 21-Jun-2010

acquisition of a global DEM according to Level-3 standard

generation of local DEMs with Level-4 like quality

demonstration of innovative bistatic imaging techniques and applications



# Timeline



# **TerraSAR-X Nominal Imaging Modes**



#### StripMap Mode

Resolution: 3 m × 3 m Scene Size: 30 km × 50 km [Range × Azimuth]



#### SpotLight Mode

Resolution:  $1 \text{ m} \times 1,5...3,5 \text{ m}$ Scene Size:  $10 \text{ km} \times 5...10 \text{ km}$ [Range × Azimuth]



#### ScanSAR Mode

Resolution: 16 m × 16 m Scene Size: 100 km × 150 km [Range × Azimuth]

# Urban Planning

# Istanbul







#### *Desaster-Monitoring* Sendai Area, Japan 12.03.2011 + 15.03.2011

TerraSAR-X Change Analysis of Sendai Area, Japan

destruction

(cyan)

S ...

boulders, mud (magenta)

# Gas Tanks at Porto Marghera (Venice)



# **TerraSAR-X Experimental vs extended to Operational Modes**

- Wide Swath
- TOPS Mode
- Staring Spotlight
- Bi-directional SAR

200 km swath width, 32 m resolution (az) 100 km swath width, 16 m resolution (az) ~2.7 km swath width, 0.24 m resolution (az) grating lobes pointing in forward and backward direction → simultaneous acquisition of two azimuth shifted images

- Dual Receive Antenna (DRA) Mode
  - Quad Polarization
  - Along Track Interferometry

# 8-Beam ScanSAR Swath width: 200 km Ireland







# **TOPS Mode Acquisition** Flevoland – Netherlands

Size: 100 km × 80 km Resolution: 16 m Descending orbit

TERRA SAR X

DLR

**Differencial Interferometry (Tops Mode)** Mexico City Subsidence due to ground water extraction









**Quad-Polarization** (experimental)

Munich



Þ DLR

Terra SAR 🗡

# Ship Detection & Measurement with DRA Mode (29.4.2009)



# High Resolution SAR Imaging with TerraSAR-X









Di

# TanDEM-X: TerraSAR-X Add-on for Digital Elevation Measurements

Launch: 21.June 2010

| DEMs         | Spatial<br>Resolution | Absolute Vertical<br>Accuracy (90%) | Relative Vertical Accuracy (point-to-point in 1° cell, 90% |  |
|--------------|-----------------------|-------------------------------------|------------------------------------------------------------|--|
| DTED-1       | 90m x 90m             | < 30m                               | < 20m                                                      |  |
| DTED-2       | 30m x 30m             | < 18m                               | < 12m                                                      |  |
| TanDEM-X DEM | 12m x 12m             | < 10m                               | < 2m                                                       |  |
| HDEM         | 6m x 6m               | < 5m                                | < 0.8m                                                     |  |

# **Standards for Digital Elevation Models**

|          | Spatial Resolution | Absolute Vertical Accuracy<br>(90%) | Relative Vertical Accuracy (point-to-point in 1° cell, 90%) |
|----------|--------------------|-------------------------------------|-------------------------------------------------------------|
| DTED-1   | 90 m × 90 m        | < 30 m                              | < 20 m                                                      |
| DTED-2   | 30 m × 30 m        | < 18 m                              | < 12 m                                                      |
| TanDEM-X | 12 m × 12 m        | < 10 m                              | < 2 m / 4 m *                                               |
| Level-4  | 6 m × 6 m          | < 5 m                               | < 0.8 m                                                     |

\* slopes below/above 20%



![](_page_17_Picture_4.jpeg)

# **Helix Formation**

![](_page_18_Picture_1.jpeg)

# **TanDEM-X Global DEM & Science Acquisition Plan**

![](_page_19_Figure_1.jpeg)

#### 1<sup>st</sup> Global Coverage (2011-2012)

• Small baseline (~200 m), HoA\* ~ 50 m

#### 2<sup>nd</sup> Global Coverage (2012-2013)

- Increased baseline (~300 m), HoA\* ~ 35 m
- Combination:
  - Dual Baseline Phase Unwrapping
  - Improved Height Accuracy

#### Additional Global DEM Acqs. (2013-2015)

- "Difficult Terrain" to account for shadow & layover
  - $\rightarrow$  Different viewing geometry
- Antarctica, deserts, filling of gaps

#### Science Phase (2014-2016)

- Acquisitions with special formations
- ATI, multistatic, PoInSAR, digital beamforming, etc.
- Higher resolution DEMs with local extend

#### Science Acquisitions (2016-2017)

- Areas of high dynamics w.r.t. local height changes
- Antarctica costal regions
- Greenland and permafrost
- Forest

#### ChangeDEM Acquisitions (2017-2019)

- Topographic changes on a global scale
- Quality improvements of the global DEM

![](_page_19_Picture_25.jpeg)

\*HoA: Height of Ambiguity  $\leftrightarrow 2\pi$  Interferometric Phase

### **Secondary Mission Objectives: New Techniques Demonstration**

![](_page_20_Figure_1.jpeg)

# **TanDEM-X Data Acquisition Modes**

![](_page_21_Picture_1.jpeg)

- both satellites transmit and receive independently
- susceptible to temporal decorrelation and atmospheric disturbances
- no PRF and phase synchronisation required (backup solution)

![](_page_21_Figure_5.jpeg)

- one satellite transmits and both satellites receive simultaneously
- small along-track displacement required for Doppler spectra overlap
- requires PRF and phase synchronisation

![](_page_21_Figure_9.jpeg)

**Alternating Bistatic** 

- transmitter alternates between PRF pulses
- provides three interferograms with two baselines in a single pass
- enables precise phase synchronisation, calibration & verification

![](_page_21_Picture_13.jpeg)

# First Pol-InSAR Data Takes

Dual-Pol HH-VV Spotlight Test Site Location: Russia InSAR Mode: Monostatic Temporal Baseline: 3sec Spatial Baseline (<sup>⊥</sup>): 275m

![](_page_22_Picture_2.jpeg)

![](_page_22_Picture_3.jpeg)

![](_page_23_Picture_0.jpeg)

![](_page_23_Picture_1.jpeg)

#### Max. phase difference

![](_page_23_Figure_3.jpeg)

×

# First Bistatic Experiments with TanDEM-X: Brasilia

Performed during the TDX pursuit monostatic phase

•

•

Innovative acquisitions with non-nominal setups

![](_page_24_Figure_3.jpeg)

Mangenta= monostatic Green= bistatic

# Interferometric Sea-Ice Mapping with TanDEM-X

ScanSAR Wide Swath Mode in NE Greenland
data acquistion: 02.08.2010
scene extension: 100km x 100km
TS-X & TD-X at 2.6 second interval
effective cross-track baseline: 135m (HoA: 38m)

Ar

Subswath 3

#### Sea ice blocks rotation analysis

![](_page_25_Picture_5.jpeg)

0.005°

0.005°

# **TanDEM-X Data Acquisition Modes**

![](_page_26_Picture_1.jpeg)

- both satellites transmit and receive independently
- susceptible to temporal decorrelation and atmospheric disturbances
- no PRF and phase synchronisation required (backup solution)

![](_page_26_Figure_5.jpeg)

- one satellite transmits and both satellites receive simultaneously
- small along-track displacement required for Doppler spectra overlap
- requires PRF and phase synchronisation

#### **Alternating Bistatic**

![](_page_26_Picture_10.jpeg)

- transmitter alternates between PRF pulses
- provides three interferograms with two baselines in a single pass
- enables precise phase synchronisation, calibration & verification

![](_page_26_Picture_14.jpeg)

#### **Relative Height Error – Evolution over Time**

![](_page_27_Figure_1.jpeg)

# **Absolute Height Accuracy**

**TanDEM-X DEM – ICESat (specification: < 10 m global, 90% confidence level)** 

|              |                                                     |           |          |             |                       | <u>ða</u>                                                                               |             |
|--------------|-----------------------------------------------------|-----------|----------|-------------|-----------------------|-----------------------------------------------------------------------------------------|-------------|
|              | Statistics                                          | All Tiles | Ice Only | Forest Only | No Forest /<br>No Ice | No Ice                                                                                  |             |
|              | Landmass<br>(Mio. square km)                        | 144.2     | 14.3     | 33.2        | 96.76                 | 129.9                                                                                   |             |
|              | Mean Height<br>Deviation (m)                        | -0.37     | -2.83    | 0.57        | 0.04                  | 0.15                                                                                    |             |
| (ji)<br>(ji) | Absolute Height<br>Accuracy<br>of 10 m              | 99.5%     | 98.4%    | 99.2%       | 99.8%                 | 99.7%                                                                                   |             |
|              | Absolute Height<br>Accuracy<br>90% Linear Error (m) | 3.5       | 6.4      | 2.3         | 0.9                   | 1.1                                                                                     | n<br>n<br>n |
|              |                                                     |           |          |             |                       | $\Delta h \in [3, 4]$ $\Delta h \in [2, 3]$ $\Delta h \in [1, 2]$ $\Delta h \in [0, 1]$ | m<br>m<br>m |

# **TanDEM-X Data Coverage – Global Voids Performance**

![](_page_29_Figure_1.jpeg)

![](_page_30_Picture_0.jpeg)

![](_page_31_Picture_0.jpeg)

390 m —

 $\rightarrow$ 

Nuclear Test Site Nevada, USA

![](_page_31_Picture_2.jpeg)

![](_page_31_Picture_3.jpeg)

#### Barringer, Arizona, 50.000 years old, 1.2 km

# Impact Craters: TanDEM-X DEMs

![](_page_32_Picture_2.jpeg)

Gottwald, M. et al., "Mapping terrestrial impact craters with the TanDEM-X digital elevation model", in "Large Meteorite Impacts and Planetary Evolution V", GSA Special Paper, in print, 2015

# DEM Products for Scientific Use TanDEM-X DEM

![](_page_33_Picture_1.jpeg)

| DEM Product                                         | Spatial<br>Resolution<br>Absolute  | Horizontal<br>Accuracy CE90 | Absolute Vertical<br>Accuracy LE90 | Relative Vertical<br>Accuracy                                                                                |
|-----------------------------------------------------|------------------------------------|-----------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------|
| TanDEM-X DEM<br>(standard<br>product 0.4<br>arcsec) | ~12 m<br>(0.4 arcsec<br>@ equator) | <10 m                       | <10 m                              | < 2 m (slope @ 20%)<br>< 4 m (slope > 20%)<br>90% linear point-to-<br>point error within an<br>area of 1°x1° |
| TanDEM-X DEM<br>(1 arcsec)                          | ~30 m<br>(1 arcsec<br>@ equator)   | <10 m                       | <10 m                              | Not specified                                                                                                |
| TanDEM-X DEM<br>(3 arcsec)                          | ~90 m<br>(3 arcsec<br>@ equator)   | <10 m                       | <10 m                              | Not specified                                                                                                |

![](_page_34_Picture_0.jpeg)

![](_page_35_Figure_0.jpeg)

\* Derived from the inversion of the TanDEM-X VV coherence by using the Lidar derived ground topography as input.

![](_page_36_Figure_0.jpeg)

\* Derived from the inversion of the TanDEM-X VV coherence by using the Lidar derived ground topography as input.

# **Experimental paddy-rice monitoring**

![](_page_37_Picture_1.jpeg)

![](_page_37_Picture_2.jpeg)

![](_page_37_Picture_3.jpeg)

Rossi/Erten, Generation of rice crops temporal change maps with differential TanDEM-X InSAR

Poland, M., Lava discharge rates determined from TanDEM-X imagery from Kīlauea Volcano, Hawai'l

#### August 3–15, 2011

![](_page_38_Picture_2.jpeg)

![](_page_39_Picture_0.jpeg)

# Ships @ the Straight of Gibraltar

![](_page_40_Picture_1.jpeg)

Entrernung

Slide 41

# **Resources Status – Hydrazine (March 2018)**

**TerraSAR-X Satellite** 

Hydrazine filling level

11 years after launch:

ca. 50%

![](_page_41_Figure_5.jpeg)

**TanDEM-X Satellite** 

Hydrazine filling level

8 years after launch:

ca. 49%

![](_page_41_Figure_10.jpeg)

![](_page_41_Picture_11.jpeg)

# **Resources Status - Battery**

![](_page_42_Figure_1.jpeg)

![](_page_42_Picture_2.jpeg)

# Long-Term System Monitoring - RCS Measurement Example

![](_page_43_Figure_1.jpeg)

# **TerraSAR-X / TanDEM-X Mission Status**

- TerraSAR-X / TanDEM-X Mission will be continued
- Stable operations in close formation since October 2010
- Precise calibration of the interferometric system
- Global TanDEM-X DEM completed in September 2016
- Available data well within specifications (outstanding absolute height accuracy and less than 0.3% voids)
- Ongoing: Bistatic acquisitions in order to fill gaps in the global DEM and to acquire updates in dedicated areas

> 90m TanDEM-X DEM available for scientific use

![](_page_44_Picture_8.jpeg)

# Tandem-L

![](_page_45_Picture_1.jpeg)

![](_page_45_Picture_2.jpeg)

# **Dynamic Processes on the Earth Surface**

![](_page_46_Figure_1.jpeg)

# **Comparison of Imaging Capacity**

![](_page_47_Figure_1.jpeg)