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Educational Objectives

To learn how SAR data can be used for biomass estimation

To understand advantages of SAR techniques over traditional 
measuring techniques

To understand the limitations of SAR data for biomass estimation

To learn optimal sensor and acquisition parameters for biomass 
estimation using SAR data
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Requirements

You know the basic concept of complex SAR data

Module ID 1100: Mathematics & Physics – Mathematic Basics

Module ID 1300: SAR basics

You know and understand physical basics

Module ID 1104: Mathematics & Physics – Physics

You know and understand SAR processing steps

Module ID 1207: Data processing – SAR specific data formats & SAR data processing

You know and understand SAR technology

Module ID 1300: SAR basics
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Structure

Introduction: What is biomass and why do we need accurate estimates of the 
(global) biomass?

Basics of biomass estimation

Advantages and disadvantages of SAR data  

Different wavelengths in biomass estimation

Biomass estimation methods using SAR data

Overview

Backscatter analysis

SAR Interferometry

Indirect estimation methods

Examples

Summary
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What is biomass and why do we need accurate estimates of the 
(global) biomass?

© wallpaperstop
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BIOMASS … “is defined as mass of life or dead organic matter” (FAO/GTOS, 2009).

Here we will mainly address living terrestrial above-ground vegetation biomass, in 
particular woody biomass.

Introduction

Above-ground   

(approx. 80%)

Below-ground, i.e. 

roots (ca. 20 %)

Forest

Agriculture

Grassland

Phytomass (>90%)

Zoomass (<10 %)

Fig.: Global Biomass (after METTE et al., 2002).

Stem (> 90%)

Branches (< 10 %)

Leaves (2-4 %)

Undergrowth (?)
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Introduction

FAO, 2009; GHASEMI et al., 2011

WHY DO WE NEED TO OBSERVE (GLOBAL) FOREST BIOMASS?

For a better understanding and quantification of:

Terrestrial carbon stocks and fluxes in forests

Terrestrial carbon sources and sinks

The global carbon cycle

Global climate change

Information of forest biomass is needed to support sustainable forest 
resource management
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Introduction

DID YOU KNOW?

Forests cover approximately 33% of the Earth’s land surface (JENSEN, 2000)

Forests play an important role in the global carbon cycle, since each year
forests absorb approximately 1/12 of the Earth’s atmospheric CO2 stock
(MALHI et al., 2002)

Forested ecosystems account for app. 72% of the Earth’s terrestrial carbon
storage (MALHI et al., 2002)

Therefore, vegetation biomass is a larger global store of carbon than the
atmosphere (FAO, 2009)

Between 1850 and 2011, humans have released app. 480 Gt (480 BILLION
TONS!!!) of CO2 into the atmosphere through fossil fuel burning and land
use changes (e.g. deforestation and fires) (GHASEMI et al., 2011)
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Introduction

In Forestry, the biomass calculation is based on measurements of
trunk diameter and height of sample populations of trees:

𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑓𝑜𝑟𝑒𝑠𝑡 = 𝑁 × 𝜋 ×
1

2
dbhmid

2

× ℎ𝑚𝑖𝑑 × 𝜌 × 𝑓𝑧

Biomassforest [t/ha] is defined as aboveground wood of trunks and branches where 
exceeding 7 cm diameter

𝐝𝐛𝐡𝐦𝐢𝐝 [cm] is the (dbh² weighted) mean diameter at breast height 1.3 m

𝒉𝒎𝒊𝒅 [m] is the height of the tree

𝝆 [g/cm³] is the species-specific wood density

𝒇𝒛 [] is a form factor (= 0.4-0.5, constant in a first order approximation)

𝑵 is the tree density (tree number per area unit)

The product of 𝑵 × 𝝅 ×
𝟏

𝟐
𝐝𝐛𝐡𝒎𝒊𝒅

𝟐

is also called basal area g.

METTE et al., 2004
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Basics of biomass estimation from SAR data

© wallpaperstop
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Advantages of SAR data
(compared to optical remote sensing data or in-situ measurements)

Higher spatial coverage 

Higher temporal resolution (repeat cycle e.g. 11 days)

 Remotely sensed data therefore can be used to fill spatial, attributional, and 
temporal gaps in forest inventory data

Contactless

 Detection of unknown regions

Retrospective analysis
(archived SAR data since 1991 (but not globally))

Microwaves enable a weather- and illumination-independent imaging process

FAO, 2009, Balzter, 2001
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Disadvantages of SAR data
(compared to optical remote sensing data or in-situ measurements)

Limitations in applicability of RS data for AGB estimation are related to

Backscatter saturation, especially in mature forests with complex stand 
structure

In rugged or mountainous regions, topography can affect vegetation 
reflectance and influence relationships between backscattering values 
and AGB  topographic correction is necessary

Satellite approaches to estimate biomass are still in experimental 
stages and pre-operational with uncertain accuracy (resp. accuracies 
under certain constraints)

FAO, 2009; GHASEMI et al., 2011
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Different wavelengths in biomass estimation

A

A - When a wave reflects off only one target and returns to the instrument this is known as
direct scattering (or “single bounce”). This occurs when the wave hits a target that is at an
orientation such that the wave is returned directly to the radar.

Fig.: Global Biomass (after METTE et al., 2002).
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Different wavelengths in biomass estimation

A B

B - Cases of more than two bounces are known as multiple scattering and occur frequently 
in environments such as dense forest canopies between trunks, branches, and twigs.

Fig.: Global Biomass (after METTE et al., 2002).
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A CB

C - If the wave reflects off two surfaces before returning to the instrument, such as often
arises in urban areas between ground and wall, or in forests between ground and tree
trunks or between trunks and twigs, this is termed “double bounce”.

Different wavelengths in biomass estimation

Fig.: Global Biomass (after METTE et al., 2002).
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Different wavelengths in biomass estimation

Fig. and Tab.: Main scatterers at different frequencies (Image credentials: THUY LE TOAN, Tab from LE TOAN ET AL., 2001).

The main scatterers in a 
canopy are the elements 
having dimension of the 
order of the wavelength
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Different wavelengths in biomass estimation

• Medium dynamic range

• Stable response to water

• Possible to identify agricultural 
fields

• Higher frame to frame 
variations

• Small dynamic range

• Variable response to water

• Variable response to open areas

• Can be used as indicator of 
environmental effects effecting 
the coherence 

C-Band L-Band

Fig.: Different wavelengths in biomass estimation (LE TOAN et al., 2001).
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Different wavelengths in biomass estimation

• Higher contrast between 
forest/non forest 

• Higher sensitivity to forest 
volume

• Confusion between water and 
dense forest

• Frame to frame variations 

• Medium dynamic range

• Stable response to water

• Possible to identify agricultural 
fields

• Higher frame to frame 
variations

• Small dynamic range

• Variable response to water

• Variable response to open areas

• Can be used as indicator of 
environmental effects effecting 
the coherence 

C-Band L-Band Coherence

Fig.: Different wavelengths in biomass estimation and coherence (LE TOAN et al., 2001).
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(Left) InSAR geometry. The along the track direction is perpendicular to the graph plane. (Right) the 

rationale of the fringes formation due to baseline (Modified from Shang-Ho, 2008).

In: Ground Based SAR Interferometry: a Novel Tool for Geoscience. -Guido Luzi DOI: 10.5772/9090 

Additional slide
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(Left) InSAR geometry. The along the track direction is perpendicular to the graph plane. (Right) the 

rationale of the fringes formation due to baseline (Modified from Shang-Ho, 2008).

In: Ground Based SAR Interferometry: a Novel Tool for Geoscience. -Guido Luzi DOI: 10.5772/9090 

Additional slide
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Fig.: ERS-Tandem intensity image and 1-day repeat-
pass phase coherence image (size 50 km by 100 km)
(LUCKMAN et al., 2000).ERS Tandem © ESA ERS Tandem © ESA

Different wavelengths in biomass estimation
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Fig.: JERS intensity image and 44-day repeat-pass 
phase coherence image (size 50 km by 100 km)
(LUCKMAN et al., 2000).

JERS © NASDA JERS © NASDA

Different wavelengths in biomass estimation
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Fig.: JERS intensity image and 132-day repeat-pass 
phase coherence image (size 50 km by 100 km)
(LUCKMAN et al., 2000).

Different wavelengths in biomass estimation

JERS © NASDA JERS © NASDA
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Biomass estimation methods using SAR data

© wallpaperstop
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SAR techniques for forest monitoring

Backscatter analysis (wavelength, polarisation, incidence angle,
number of images)

Interferometry: coherence analysis (wavelength, polarisation,
incidence angle, temporal and spatial baseline, number of images,
acquisition conditions)

Interferometry: phase analysis (wavelength, incidence angle, high
coherence required, acquisition conditions)

Polarimetry (wavelength, incidence angle, number of images)

Polarimetric interferometry (wavelength, polarisation, incidence
angle, temporal and spatial baseline)

SAR (polarimetric) tomography (wavelength, polarisation, incidence
angle, spatial baseline, high coherence required, number of images)

Module 2200: SAR 
interferometry

Module 2200: SAR 
interferometry

Module 2300: 
SAR polarimetry
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indirectlyregression

Biomass estimation methods

AGB

Backscatter InSAR
Conversion from
forest parameter

Relating the backscatter

values to field biomass

measurements using

regression analysis

Examining the coherence

of two SAR images

collected from similar

viewing positions with a

short time-lag

e.g. forest height estimates 

from single frequency 

polarimetric-interferometric

SAR data

Conversion through 

allometric height-biomass 

relations

[after GHASEMI, 2011]
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Biomass estimation methods

Backscatter analysis

SAR interferometry

Indirect biomass estimation – biomass from forest height
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SATURATION PROBLEM

Fig.: Regression analysis of
radar backscatter with forest
AGB. P-band HV
backscattering coefficient
plotted against AGB from
experiments conducted at five
different forests. The green
points with error bars
represent the mean value and
standard deviation of all points
falling within a biomass bin of
+/- 10 tons/ha. The line is a
regression curve applied to the
full dataset. The corresponding
RMSE in biomass is 51.6
tons/ha and the coefficient of
determination r² = 0.67
(Credis: LE TOAN, in ESA, 2008).

Backscatter analysis
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Fig.: Relationship between SAR backscatter (AIRSAR data) and 
LiDAR derived above ground biomass, Queensland, Australia  

(LUCAS et al., 2006).

Backscatter 
analysis
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Backscatter analysis

[after WOODHOUSE]

SATURATION PROBLEM

Saturation means the SAR response levels offs, i.e. the slope
of the regression line approach zero.

Biomass is not longer predictable from the signal.
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Backscatter analysis

[LU, 2006]

SATURATION PROBLEM

The saturation level of different wavelengths and polarizations depends
on:

Wavelength (i.e. different bands, such as C, L, P)

Polarization (HV, HH and VV)

Object characteristics (vegetation stand structure and ground
conditions)

Available time series
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Backscatter analysis

SATURATION PROBLEM – The Water Cloud Model Explanation

But do trees look like that?

h ?

Saturation

Amount of “stuff” (ABG)

In
te

n
si

ty

The GroundA patch of vegetation

?

Amount of “stuff” (ABG)
In

te
n

si
ty

The Ground

hThe Ground

A patch of vegetation

[after WOODHOUSE]
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Backscatter analysis

A Water Cloud-like Model

A water cloud with gaps is close to reality and easy to handle

The model expresses the forest backscatter as function of the area-fill factor , i.e. 

the forest canopy cover

?

Amount of “stuff” (ABG)

In
te

n
si

ty

The Ground

hThe Ground

A patch of vegetation

[after WOODHOUSE; THIEL, 2012]

   tree

o

vegtree

o

gr

o

gr

o

for TT  11 

canopy cover tree transmissivity (depends on tree height and signal attenuation)

FIG.: WOODHOUSE
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Backscatter analysis

A Water Cloud-like Model

For applications it can be written in terms of growing stock volume

?

Amount of “stuff” (ABG)

In
te

n
si

ty

The Ground

hThe Ground

A patch of vegetation

[after WOODHOUSE; THIEL, 2012]

  Vo

gr

Vo

veg

o

for ee     1

Unknown

σgr ground backscatter   
σveg canopy backscatter
β forest transmissivity coefficient

FIG.: WOODHOUSE
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Backscatter 
analysis

Fig.: Saturation (IMHOFF, 1995:514).

SATURATION PROBLEM

Imhoff, 1995

Data/Instrument:

NASA/JPL polarimetric AIRSAR
operating at C-, L-, and P-band

Incidence angle 40°-50°

Mono-temporal acquisitions!

C-band ≈ 20 tons/ha (2 kg/m²)

L-band ≈ 40 tons/ha (4 kg/m²)

P-band ≈ 100 tons/ha (10 kg/m²)
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Backscatter 
analysis

Fig.: Saturation (IMHOFF, 1995:514).

SATURATION PROBLEM

Imhoff, 1995

Objects of study:

Conifer: a combined data set of 
coniferous forest stands from 
Northern America and Europe

Broadleaf evergreen: tropical 
broadleaf evergreen forests of 
mixed ages in natural settings 
located along a moisture gradient 
on the Island of Hawai’i.
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Backscatter 
analysis

Fig: Calibrated P-band backscatter as a function of the log of total 
above-ground biomass (tons/ha) of maritime pine and loblolly 

pine (DOBSON, 1992:413f).

SATURATION PROBLEM

Dobson, 1992

Data/Instrument:

NASA/JPL polarimetric AIRSAR
operating at C-, L-, and P-band

Incidence angle 40°-50°

Mono-temporal acquisitions!

P-band ≈ 100-200 tons/ha
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Backscatter 
analysis

Fig: Calibrated L-band backscatter as a function of the log of total 
above-ground biomass (tons/ha) of maritime pine and loblolly 

pine (DOBSON, 1992:413f).

SATURATION PROBLEM

Dobson, 1992

Data/Instrument:

NASA/JPL polarimetric AIRSAR
operating at C-, L-, and P-band

Incidence angle 40°-50°

Mono-temporal acquisitions!

L-band ≈ 60-100 tons/ha
(Luckman et al. 1998, also found that L-band in tropical
forests saturates at 60 tons/ha)
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Fig.: Multitemporal data (SANTORO et al., 2006).

Backscatter analysis

STRENGTH OF MULTITEMPORAL DATA

JERS Backscatter

RMSE: 33 m3/ha

Relative RMSE: 22 %
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SUMMARY

At C-Band backscatter saturation occurs at relatively low values of biomass
density and only under certain conditions, such as dry soil, it is possible to
differentiate between forests and other types of vegetation (LUCKMAN et al.,
2000; GHASEMI, 2011:776).

At L-Band backscatter saturation seems to depend on forest type (IMHOFF,
1995).

In critical tropical forest areas where aboveground biomass density can reach
values of 600 tons/ha, space-borne L-Band SAR sensitivity to biomass is
found only up to 50 tons/ha (LUCKMAN et al., 1998).

Using a combination of C and L band has shown better results than using one
of the bands solely (HOEKMAN & QUIÑONES, 1997).

Backscatter analysis
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SUMMARY

Correlation between AGB and backscatter is best for longer wavelengths (L
and P band) and cross-polarized measurements (WOODHOUSE, 2006:143,
GHASEMI, 2011:776).

Co-polarized data (HH and VV) at the longer wavelengths, especially P band,
is sensitive to changing surface conditions (GHASEMI, 2011:776, BALZTER,
2001:169).

Cross-polarized (HV and VH) backscattering mainly originates from multiple
scattering within the tree canopy and is less influenced by the surface
condition (GHASEMI, 2011:776).

Backscatter analysis
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See also module 
2200: SAR 

interferometry

Biomass estimation methods

Backscatter analysis

SAR interferometry

Indirect biomass estimation – biomass from forest height
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SAR interferometry

Coherence and INSAR phase contain information on forest

Interferometric Coherence – correlation of two complex SAR images

**

*

2211

12

ssss

ss
  ie







12 , ss

degree of coherence

interferometric phase

ensemble average

co-registered complex image values

Fig.: Concept InSAR (RIBBES et al., 1997).

Complex interferogram:
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SAR interferometry

Coherence and INSAR phase contain information on forest

Interferometric Coherence – correlation of two complex SAR images

[STROZZI, InSAR Sommerschule 2002] Fig.: Concept InSAR (RIBBES et al., 1997).

Interferometric coherence is reduced by:

Temporal decorrelation

Geometric decorrelation

Atmosphere

Noise
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Fig.: Temporal change of the surface (PALLAN, w.y.,w.p.).

Fig.: Simplified concept of the critical
baseline (PELTZER, o. A.:o. S., edited).

Spatial decorrelation

Fig.: Decorrelation due to the critical
baseline (WRICKS, 2006:o.S.).

Temporal decorrelation

SAR interferometry

Coherence and INSAR phase contain information on forest

Interferometric Coherence – correlation of two complex SAR images



49

Copyright  ©

ExamplesMethodsSAR BasicsIntroduction SummaryOverview

28,0 5,0 65,0 82,0

[MFFU Sommerschule, 2000]

 degree of coherence

SAR interferometry

Coherence and INSAR phase contain information on forest

Interferometric Coherence – correlation of two complex SAR images
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Coherence and INSAR phase contain information on forest

Histogram of 

averaged coherence of 

main classes:

ERS tandem (1 day)

[STROZZI, InSAR Sommerschule 2002]
ERS long-term (35 days)

SAR interferometry

ERS © ESA

ERS © ESA
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Coherence and INSAR phase contain information on forest

Interferometric Coherence – correlation of two complex SAR images

Coherence vs. Biomass (C-band) Coherence vs. Stem volume (L-band)

Fig.: Variation of the coherence vs. stand biomass
(RIBBES et al. 1997).

(05feb2008-22mar2008)

Fig.: Variation of the coherence vs. stem volume (THIEL, 
unpublished).

SAR interferometry
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ERS Tandem Coherence

RMSE: 10 m3/ha

Relative RMSE: 7 %

Fig.: Multitemporal data (SANTORO et al., 2002).

SAR interferometry

STRENGTH OF MULTITEMPORAL DATA
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Biomass estimation methods

Backscatter analysis

SAR interferometry

Indirect biomass estimation – biomass from forest height
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Biomass from forest height 

1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS

Indirect forest biomass estimates through a forest parameter, that can be
extracted more accurately than biomass

Forest height is closely related to forest biomass

Indirect biomass estimation :

BUT: The total error includes both, the error in the height extraction and in
the height-biomass conversion!
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Forest height estimates using remote sensing methods:

1. Directly from LIDAR data

2. From single frequency, fully polarimetric-interferometric SAR 
data (PolInSAR) through model-based inversion (e.g. METTE et al. 
2002, METTE et al. 2004)

3. Stereoscopic aerial photography

1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS

Biomass from forest height 
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Biomass from forest height 1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS

Fig.: WOODHOUSE.
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Biomass from forest height

LIDAR first return 

from forest canopy

LIDAR last return 

from forest floor

P-band return from 

forest floor

1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS

Fig.: WOODHOUSE; data from SASSAN SAATCHI, JPL.
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Biomass from forest height

Fig.: Pol-InSAR height estimates at P-Band versus LIDAR H100 
validation plot for the Mawas River test site (100 samples) 
(HAJNSEK et al., 2009).

1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS
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Biomass from forest height

Tree height from POLINSAR:

Height localisation of different scattering mechanism

Requires coherent interferometric pair of polarimetric data

A) Same polarisation – different position B) Same position – different polarisation 

1 2

Interferometry Polarimetry

+

1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS

Fig.: THIEL, 2012.
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Biomass from forest height

Tree height from POLINSAR:

Fig.: 

(a) L-Band SAR data of the airfield 
in Oberpfaffenhofen, 
Germany and 

(b) Tree height from L-Band pol. 
InSAR result.

(a)

(b)

1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS

© DLR
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Biomass from forest height

Tree height from POLINSAR:

Fig.: Tree height from L-Band pol. InSAR result.

1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS

© DLR
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Biomass from forest height

Model

SAR measures Forest Parameters

forward

inversion

1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS
Forest height estimates from single frequency, 
fully polarimetric-interferometric SAR data 
through model-based inversion

Fig.: Linking SAR measures and forest parameters (THIEL, 2012).
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Biomass from forest height

Interferometric volume decorrelation is defined as the 

(normalized) Fourier transform of the vertical distribution

of the scatterers, and it is dependent on forest height.

It is necessary to develop a model that:

Random Volume over Ground-model (RVoG)

… interprets the interferometric coherence as a function of forest height and 
extinction (both polarization independent), and a polarization dependent ground.

1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS

[METTE et al. 2004]

Considers attenuation and ground contribution, but

Is still simple enough to be solved with a limited number of input variables 



64

Copyright  ©

ExamplesMethodsSAR BasicsIntroduction SummaryOverview

In forestry, the biomass calculation is based on measurements
of trunk diameter and height of sample populations of trees:

𝐵𝑖𝑜𝑚𝑎𝑠𝑠𝑓𝑜𝑟𝑒𝑠𝑡 = 𝑁 × 𝜋 ×
1

2
dbhmid

2

× ℎ𝑚𝑖𝑑 × 𝜌 × 𝑓𝑧

Biomassforest [t/ha] is defined as aboveground woody of trunk and branches where 
exceeding 7 cm diameter

𝐝𝐛𝐡𝐦𝐢𝐝 [cm] is the (dbh² weighted) mean diameter at breast height 1.3 m

𝒉𝒎𝒊𝒅 [m] is the height of the tree

𝝆 [g/cm³] is the species-specific wood density

𝒇𝒛 [] is a form factor (= 0.4-0.5, constant in a first order approximation)

𝑵 is the tree density (tree number per area unit)

The product of 𝑵× 𝝅 ×
𝟏

𝟐
𝐝𝐛𝐡𝒎𝒊𝒅

𝟐

is also called basal area g.

[METTE et al. 2004]

Biomass from forest height 1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS

Repetition 
Introduction: 

slide 11 
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Biomass from forest height

Conversion through allometric height-biomass relations:

Biomassforest = a × heightc

Parameters a and c are studied from yield tables

Constraints: 

Mathematically - h, dbh and N (or g) are allometrically interrelated

Biologically - the growth rates of h, dbh, and N (or g) have to maintain constant 
relations

1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS

[METTE et al. 2004]

Yield tables contain stand parameters, such as: height, dbh, tree number, 
basal area, as a function of age and site condition

Yield tables are based on long-term records of even-aged single species 
forests under defined thinning conditions
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Biomass from forest height 1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS

Fig.: Correlation of forest heights vs. biomass 
for the ground measurements and Pol-InSAR
extracted heights that were converted to 
biomass through height-biomass allometry
[Biomass = 0.801 x h100

1.748] 
(METTE et al., 2004). 
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Biomass from forest height

[ESA BIOMASAR Project, MAURIZIO SANTORO, 2007]

A multi-temporal combination of single estimates with weights determined 
by the backscatter contrast 0

veg - 0
gr allows obtaining the final estimate

1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS

Multi-temporal combination of single biomass estimates

Modeling Inversion
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Single-image Multi-temporal 
(29 images) 

Inventory  

[ESA BIOMASAR Project, MAURIZIO SANTORO, 2007]

1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS

Biomass from forest height

Multi-temporal combination of single biomass estimates

From a single image it is possible to identify sparse/dense forest patterns at most

From multi-temporal combination it is possible to identify biomass levels
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EXAMPLES

© wallpaperstop
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Application examples

SIBERIA - Biomass mapping in Siberia

ESA DRAGON – Biomass mapping in China 

BIOMASAR – Panboreal forest growing stock volume maps

SARvanna – Vegetation structure mapping in the Kruger National Park

Biomass from forest height – Fichtelgebirge, Germany
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Application examples

SIBERIA - Biomass mapping in Siberia

ESA DRAGON – Biomass mapping in China 

BIOMASAR – Panboreal forest growing stock volume maps

SARvanna – Vegetation structure mapping in the Kruger National Park

Biomass from forest height – Fichtelgebirge, Germany
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SIBERIA project

SAR coherence and
intensity overlaid
with co-registered 
forest-GIS-polygons

Fig. (top): ERS Tandem coherence versus 
growing stock volume (© SIBERIA 

project, 1999, 2000)
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SIBERIA project

Class separability

Fig.: © SIBERIA project, 1999, 2000
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SIBERIA project
Model definition for coherence 

    
V

v

ev


  0

750    ba

   

V

v

ebav


 7575 )1()(

  1.122
7575 581.0330.0)(

v

ev


 

75 

v = growing stock volume

0 = coherence at v = 0 m3/ha (non-forest)

 = coherence for asymptotic values of v (corresponding to dense forest)

75 = value where the coherence distribution reach 75% of the maximum value (Fig.)

V = characteristic v value where the exponential function has decreased by e-1

Wagner et al., 2003
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SIBERIA project

ERS coherence image

JERS intensity image

Use model to
calculate class

means

Maximum 
Likelihood
Classifier

Iterated Contextual 
Probability Classifier

(ICP)

Fig.: Classification chain
(© SIBERIA project, 1999, 2000)
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SIBERIA project

Nothing as yet global 
and accessible as
Above Ground
Biomass

Regional – SIBERIA (1 
Mio. km² at 50m, 
1998) based on SAR 
interferometry

Fig.: Final forest biomass map – Siberia project (© SIBERIA Project 1999, 2000)
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Application examples

SIBERIA - Biomass mapping in Siberia

ESA DRAGON – Biomass mapping in China 

BIOMASAR – Panboreal forest growing stock volume maps

SARvanna – Vegetation structure mapping in the Kruger National Park

Biomass from forest height – Fichtelgebirge, Germany
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DRAGON project

Phased project areas and Landsat mosaic

© ESA© FSU
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DRAGON project

 
Fig.: ERS-1/2 tandem coherence map of Southern China (Courtesy ESA DRAGON Project (O. Cartus, M. Santoro))

© FSU
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DRAGON project

Courtesy ESA DRAGON Project (O. Cartus, M. Santoro)

© FSU

© FSU

© FSU
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DRAGON project

Fig.: ERS-1/2 tandem coherence stem volume map 1995/98 of Southern China (Courtesy ESA DRAGON Project (O. Cartus, M. 
Santoro))

© FSU

© FSU
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Automatic
Adaptive
Consistent
Validated

© FSU

Courtesy ESA 
DRAGON Project 

(O. Cartus, M. 
Santoro)

DRAGON 
project
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2010 Dragon 2 Mid Term Results Symposium [17 – 21 May 2010]                                 Christiane Schmullius                     Slide 22

DRAGON-2 project

Forest Cover (Structure) Change – First Results

1995-1997 (ERS-1/2 Tandem, previous slides, resampled) - 2007/08 (ASAR 
GMM, BIOMASAR algorithm – see slides 85ff.)

Regrowing forest after forest fire in 1987

© FOREST DRAGON 2: Mid-Term Results of the European Partners 
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2010 Dragon 2 Mid Term Results Symposium [17 – 21 May 2010]                                 Christiane Schmullius                     Slide 22

DRAGON-2 project

Forest Cover (Structure) Change – First Results 

© FOREST DRAGON 2: Mid-Term Results of the European Partners 

Xiaoxinganling

© Google Earth 2004



86

Copyright  ©

ExamplesMethodsSAR BasicsIntroduction SummaryOverview

2010 Dragon 2 Mid Term Results Symposium [17 – 21 May 2010]                                 Christiane Schmullius                     Slide 22

DRAGON-2 project

Fig.: Forest growing 
stock volume map 
from 2005 for 
Northeast China, 
produced with the 
BIOMASAR 
algorithm by 
Santoro, et al. 2011 
(© ESA FOREST 
DRAGON-2) 
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2010 Dragon 2 Mid Term Results Symposium [17 – 21 May 2010]                                 Christiane Schmullius                     Slide 22

DRAGON-2 project

Fig.: Forest growing 
stock volume (GSV) 
change map. This 
map shows the 
difference in GSV 
values between the 
years 1995/98 and 
2005. The map 
considers the 4 
classes of the ERS-
1/2 GSV map (0-
20m³/ha, 20-
50m³/ha, 50-
80m³/ha and 
greater than 
80m³/ha) (© ESA 
FOREST DRAGON-2) 
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Application examples

SIBERIA - Biomass mapping in Siberia

ESA DRAGON – Biomass mapping in China 

BIOMASAR – Panboreal forest growing stock volume maps

SARvanna – Vegetation structure mapping in the Kruger National Park

Biomass from forest height – Fichtelgebirge, Germany
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BIOMASAR GSV products

Québec

Sweden

Central 

Siberia
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m3/ha

m3/ha

BIOMASAR project

1-km forest GSV map of Central 
Siberia

2,400,000 km²

ENVISAT ASAR Global Monitoring 
mode (Jan. 2005 – Feb. 2006) 

GLC 2000 land cover used as
background

© FSU
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BIOMASAR project
Pan-boreal growing stock volume

© FSU
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Radar-retrieved growing stock 
volume map of Mexico

BIOMASAR project

© FSU
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BIOMASAR project
Comparison of

vegetation structure:
BIOMASAR-product

based on ASAR GMM  
versus MODIS VCF

© FSU © GLCF
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Application examples

SIBERIA - Biomass mapping in Siberia

ESA DRAGON – Biomass mapping in China 

BIOMASAR – Panboreal forest growing stock volume maps

SARvanna – Vegetation structure mapping in the Kruger National Park

Biomass from forest height – Fichtelgebirge, Germany
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Kruger National Park Woody Cover Maps 

based on April 1994 SIR-C C- (right) and L-band data 

(left) at 37 deg incidence angle.

Retrieval algorithm:  Volume Component from 

Freeman Decomposition



96

Copyright  ©

ExamplesMethodsSAR BasicsIntroduction SummaryOverview

Chunsky North – Regression Analysis for ALOS PALSAR Data

Stem volume vs. coherence

(05feb2008-22mar2008) – 12.5 m data

Stem volume vs. backscatter (HV)

(05aug2007) – 12.5 m data

Very significant correlation between SAR data and stem volume!

SARvanna project
Methodology – Jena IWC-model – excursus

© FSU © FSU
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A water cloud with gaps is closer to reality and easy to handle
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Ground backscatter
Vegetation backscatter

Forest transmissivity

SARvanna project
Methodology – backscatter model

Forest transmissivity is related to canopy closure and tree attenuation

© FSU Jena
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The total forest coherence is a sum of 2 contributions:

Ground coherence, gr Vegetation coherence, veg

Model considers tree attenuation (), gaps (), InSAR geometry ()

Coherence modelling - Interferometric Water Cloud Model (IWCM)

 V

veg

V

grfor ee     1
 

Empirical relationship

No dependence upon InSAR geometry, forest backscatter and canopy structure

SARvanna project
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Biomass map based on 
the Jena IWC-Model  
(Interferometric
Water Cloud Model).
Resolution 12,5 m.

Data Source:
ALOS PALSAR,
L-HH coherence from
December 2008 until 
February 2009.

SARvanna
project
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GlobBiomass 
global retrieval algorithm

BIOMASAR-C+

It is unlikely that the desired accuracy can be achieved with a single approach/data type!!!



A global GSV-map for the year 2010

102
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Application examples

SIBERIA - Biomass mapping in Siberia

ESA DRAGON – Biomass mapping in China 

BIOMASAR – Panboreal forest growing stock volume maps

SARvanna – Vegetation structure mapping in the Kruger National Park

Biomass from forest height – Fichtelgebirge, Germany
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Indirect biomass estimation from forest height

Mette et al., 2002 & 2004

E-SAR data from May 11, 2001

L-Band fully polarimetric data with an effective baseline of 8-10 m 
(at 45° incidence angle) and 14 min temporal baseline

Test site Fichtelgebirge, Germany

Forest height  inversion using the RVoG model
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Fig.: Validation of forest heights extracted from Pol-InSAR data. (Left) aerial photograph, and extracted forest heights (scaling 0-
25m), arrows=recent reforestations, small circles=selected test sites, (right) transect through four test sites: coneshaped=spruce, 
balloon shaped=beech, the right graph illustrates how much biomass is concentrated in each tree height class (2m interval). The 
thin line on the left depicts the height distribution and h determined from the ground measurements, the thick line the height 

distribution and h 100 from the extracted heights (METTE et al., 2004). 

1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS

Indirect biomass estimation from 
forest height
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1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS

Fig.: Forest height image of a 
part of the Fichtelgebirge 
where forest height was 
extracted from the Pol-InSAR
data using the random 
volume over ground 
scattering model. It is 
overlayed with a vector layer 
that contains the stand 
borders. Where two stands of 
different height meet, the 
stand border becomes clearly
visible (METTE et al., 2002). 

Indirect biomass estimation from 
forest height



107

Copyright  ©

ExamplesMethodsSAR BasicsIntroduction SummaryOverview

Fig.: Forest biomass allometry from yield tables of temperate forest species using different input parameters: (a) height, 
(b) heightvolume, (c) basal area, (d) dbh, (e) inverse tree density, (f) age. Each plot represents four species (=colors): 

spruce, pine, beech and oak. The different curves of each color stand for the different yield classes (METTE et al., 2004). 

1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS

Indirect biomass estimation from 
forest height
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1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS

Indirect biomass estimation from 
forest height

Reference data

𝑩𝒊𝒐𝒎𝒂𝒔𝒔𝒇𝒐𝒓𝒆𝒔𝒕= usable wood biomass (includes trunk and 
branches exceeding 7 cm diameter)

𝐵𝑖𝑜𝑚𝑎𝑠𝑠=𝑣𝑜𝑙𝑢𝑚𝑒 × 𝜌 (where 𝜌 is the species’ raw density) 

Reference heights:

hmid = Corresponding to the mid dbh which is an area weighted (dbh²)      
arithmetic mean for all trees per area unit (hectare [ha])

h100 = Upper canopy height, top height (average height of the highest 

100 trees per hectare

METTE ET AL., 2002
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1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS

Fig.: Forest stem biomass 
image calculated from forest 
heights. Assuming that the 
extracted height of each pixel
equals the h of that pixel, the 
height-biomass allometry for 
Norway spruce was applied to 
calculate stem biomass. Since 
the test site is dominated by 
managed Norway spruce 
stands the accuracy should 
not fail by more than +/- 15 % 
(METTE et al., 2002). 

Indirect biomass estimation from 
forest height
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1 - FOREST HEIGHT

2 - CONVERSION

3 - FOREST BIOMASS

Fig.: Height-biomass allometry for a montane tropical rain forest (Peru) and a temperate 
spruce forest (Germany) (METTE et al., 2002). 

Indirect biomass estimation from 
forest height
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SUMMARY

© wallpaperstop
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Summary
SAR techniques for forest monitoring

Backscatter analysis (long wavelength, HV polarisation, the shorter the wave-
length – the more images, summer data in boreal zone) – Sentinel-1, ALOS-2

Interferometry: Coherence analysis (shorter wavelengths require shorter
temporal and spatial baselines, frozen conditions in the boreal zone), new
results show great potential of single pass TanDEM-X coherence

Interferometry: Phase analysis (multi wavelength, polarisation, single-pass,
acquisition conditions!) – no operational sensor constellation yet, but…

Polarimetry (long wavelength, high number of images) – still matter of
research, some potential was demonstrated

Polarimetric Interferometry (long wavelength, spatial baseline, single-pass,
acquisition conditions!) – no operational sensors yet, but…

(Polarimetric) Tomography (long wavelength, polarisation, spatial baselines,
quasi single-pass, acquisition conditions!) – no operational sensors (and no
planning for the future)
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METHOD EXAMPLE

Backscatter analysis Estimation of AGB at 
different scales

Relation between radar
backscatter and forest biomass
is often ambiguous and
saturates rapidly with biomass
except with hyper-temporal
approach (BIOMASAR)

Le Toan et al. 1992
Dobson et al. 1992

Santoro et al. 2011

Interferometric coherence No saturation problem Strong dependency on the time
span and the conditions
between the 2 acquisitions

Hyyppä et al. 2000
Fransson et al. 2001
Pulliainen et al. 2003

Inversion from other forest 
parameters, e.g. forest 
height

Forest height easier to 
measure using RS 
techniques
Close relationship between 
forest height and biomass

Total error includes both, the
error in the height extraction
and in the height –biomass
conversion

Mette et al. 2004
Mette et al. 2002

Summary
Biomass from RADAR REMOTE SENSING

[GHASEMI et al., 2011; METTE et al., 2004]
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https://registrierung.cdonline.de/erdbeobachtung/downloads/

vortraege/Tag2/4a/3_Urbazaev_Sentinel4REDD.pdf

Sen4REDD ESA-Project with a testsite in Chapas

https://registrierung.cdonline.de/erdbeobachtung/downloads/vortraege/Tag2/4a/3_Urbazaev_Sentinel4REDD.pdf
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