
Armando Marino

Introduction to Polarimetric
Synthetic Aperture Radar

POLSAR

Armando Marino

The University of Stirling, Scotland, UK



Armando Marino 2

Outline

 What is polarimetry?

 Basic concepts in polarimetry:
 Wave
 Single targets
 Partial targets

 Target decomposition:
 Coherent
 Incoherent

 Non-model based
 Model based
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What is Polarimetry?

Polaroid Glasses 3D Cinema

You may know how polarimetry can be exploited in optics:
1. Polaroid glasses
2. Modern 3D Cinema
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Why Polarimetry in radar remote sensing?
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 Different targets generally interact in a different way when 
illuminated by differently polarised plane waves

 We can use polarimetry to:
 Classify
 Detect
 Separate returns 

Few definition… (they will be treated in details later on): 
 Isotropic: the target interacts at the same way with any polarisation (the interaction 

does NOT depend on the direction of the Electric field vector)
 Anisotropic: the scatterer has a different behaviour for different polarisations
 Depolarisation: the tendency of a target to change the polarisation of the incident 

wave, but in some contexts is only refereed to the lost of polarimetric purity (i.e. the 
polarisation changes in time/space)
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Why Polarimetry in radar remote sensing?

Pauli RGB image of San Francisco Bay (AIRSAR). The polarimetric information is coded 
in the colours. As you can notice we can use colours to differentiate between targets. 

Data courtesy of MDA and Canadian Space Agency. 
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Why Polarimetry in radar remote sensing?

Pauli RGB image around Buenos Aires (ALOS-1). The polarimetric information is coded 
in the colours. As you can notice we can use colours to differentiate between targets. 

Data courtesy of JAXA. 
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Let’s translate this into a matrix!
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Three core concepts you should 
remember:

Idea1: Wave polarimetry
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The most general way to describe any (macroscopic) electromagnetic phenomenon is 
by using the legendary Maxwell equations

After a series of hypothesis (i.e. monocromatic or narrowband signal, homogeneous, 
stationary and isotropic medium) we end up with a Plane Wave that can be “easily”
described knowing the currents over the surface of the target

Wave Polarimetry: Plane waves

Animation: Wikipedia

Wave front:
It’s a plane

Transverse plane:
Perpendicular to 
the direction of 
propagation

x

y
r
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Wave Polarimetry: mathematical expression

The mathematical expression of the plane wave is the following

E: electric field, it’s a complex vector (when E is cleaned by the dependences 
on the distance is sometime refereed as Jones vector)
H: magnetic field, it’s a complex vector and can be derived from E

: electric permittivity of vacuum
: magnetic permeability of vacuum

f: frequency of monocromatic (or narrowband) wave
R: distance from the source (generator) of the wave

0
0
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Slide 11

Wave Polarimetry: useful abstraction

 Problem: It is 
complicated to study the 
wave polarimetry starting 
from the Jones vectors.

 Solution: we use a 
geometrical abstraction 
and wave polarimetry 
becomes an ellipse. We 
need: 
 2 parameters for the 

ellipse shape
 1 for the amplitude
 1 for the phase

Parameters needed
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Three different concepts you must 
remember:

Idea2: Scattering polarimetry 
Deterministic targets
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Single targets?!?! What is that?!?!?

 A single target is a target that does NOT change its polarimetric signature in 
time/space: it is a deterministic target

 Examples: 
 calibration targets: corner reflectors
 Some metallic or man-made targets (but not all of them): a car, a wall
 Some natural target: a rock 

Trihedral 
corner reflector
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Corner reflectors in X-, 
C- and L-band SAR 
imagery.

Corner Reflectors as the tie between 
InSAR and GNSS measurements: Case 
Study of Resource Extraction in Australia
March 2015
DOI: 10.5270/Fringe2015.pp60

How do they look like?
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Pauli RGB image around Buenos Aires (ALOS-1). The polarimetric information is coded 
in the colours. As you can notice we can use colours to differentiate between targets. 

Data courtesy of JAXA. 

Are ships single targets?

It depends on the 
size of the ship, 
but generally they 
are a collection of 
several single 
targets.
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Single targets: how to study polarimetric targets 
 We want to use polarimetry to detect single targets and we can transmit and receive 

polarised waves:
 How many polarimetric acquisitions would we need?

 To characterise any polarised wave we need 2 polarisations, since the plane wave 
is 2 dimensional (2-D).

 If we send a polarised wave (e.g. linear horizontal), this will generate currents on our 
target and these currents will scatter a wave with some polarisation. Therefore we 
need to collect 2 polarisations to characterise such scattered wave.

 But what happen if we change the polarisation of the transmitted wave (the wave 
that we send from the satellite)?... 
 Well, we will have different currents on the surface.

 In order to cover each possible transmitter waves, we need to send two 
polarimetrically orthogonal waves.

 Summarising, we transmit 2 orthogonal waves and collect 2 orthogonal waves: 
2x2=4 channels/acquisitions needed
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Single targets: same as before, but with math 

 We can arrange the 4 acquisitions discussed before in a matrix: the 
Scattering or Sinclair matrix
 H: horizontal linear
 V: vertical linear

 The matrix will represent a transformation from transmitted polarised 
waves to received waves: i.e. it describe the polarimetric behaviour of the 
target

Cross-polarisations

Co-polarisations

 ( )r iE C r S E

Incident 
(transmitted) 

wave

Scattered
(received) 

wave

Complex scalar depending on distance and 
medium where the wave propagates (e.g. air)
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Single Look Complex

Data are stored in complex form, that is real plus imaginary part
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Scattering 
Mechanism

Single targets: same as before, but with 
vectors

 An easier way to see the polarimetric information is vectorising the scattering matrix
 Also, we are often interested in polarimetry alone and not how much the target 

scatter: so we normalise the scattering vector and obtain the scattering 
mechanism (this is sometime called projection vector).

 How many parameters we need:
 In general 8 since we have 4 complex numbers
 But for scattering mechanism we remove the overall power (length of vector)
 It can also be showed that the “absolute phase” (a phase term that we can put 

as overall factor) does not keep information.
 We end up with 6 parameters for a scattering vector 

Parameters needed
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Scattering vector

 In case the system is monostatic (one antenna as transmitter-receiver), and the 
medium observed is reciprocal (it behave at the same way independently by the 
direction of propagation of the wave) the two cross-polarisations are the same.

 We need less parameters to characterise targets in such situation.
 Please note, HV and VH are exactly the same except for thermal noise.
 Please note, at low frequencies (P and sometime L band) the ionosphere is not 

reciprocal introducing non-reciprocity (i.e. Faraday rotation). This is a problem only 
for satellites.

Parameters needed

HV VHS S

Single targets: same as before, but with 
a simplification
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Pauli bases:

Single targets: some physical interpretation

 The idea of using polarimetry is based on the physical concept that different 
targets will be excited with different currents. Therefore, it has a narrow 
relation with some physical interpretation. 

 The scattering vector (as any vector) has to be expressed in some basis. 
The one that list the elements of the S matrix is called Lexicographic basis.

 There are also other basis that helps having some physical interpretation of 
the target. An example is the Pauli basis. 
 Each of the components is sensitive to a specific target (you will learn 

more on this when specking about Decompositions).

Lexicographic  bases:
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Three different concepts you must 
remember:

Idea3: scattering polarimetry
Distributed/partial targets
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Problem: statistic or distributed targets

 This is a concept narrowly related with what we said in the lecture about Speckle

 When the target changes spatially it can NOT be represented by a unique Scattering 
matrix. It is a random process.

 In this image, you can imagine the
squares as the resolution cells…

 The target under analysis is the
same (the same forest)… but the
objects things inside the squares are
different (as you can see):
 So, how do we deal with this

variation? The scattering matrix
will change pixel by pixel due to
the speckle (because the targets
in each resolution cell is slightly
different).
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Slide 24

Solution: second order statistics
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General formulation (any basis)

 In order to extract information the second order statistics of the target can be 
extracted

 In case of Gaussian complex pixels, these contain all the information about the 
random process

 In Lexicographic basis, we often talk about COVARIANCE matrix
 In Pauli basis, we often talk about COHERENCY matrix (the difference is only the 

basis and we can transform one into the other)  

Average
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Properties of Target Coherency Matrix
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Parameters needed

It is 
Hermittian:

*[ ] [ ] TC C

Semi-positive 
Definite

* [ ] 0TI C  

Rank 1 [C] matrices has a unique 
representation as [S] matrices (unless 

one absolute phase)… i.e. they are 
built with one single scattering vector

 How many parameters we need?
 3 for the diagonal real positive terms
 6 for the off diagonal complex terms
 If we neglect the overall amplitude (trace of the matrix) we reduce one 

parameter

Real positive Complex

Lower and upper 
triangular parts are 
complex conjugate



Armando Marino 26

How do we practically use this? 
 An easy way to use this is by creating one image each element of the covariance 

matrix
 Pay attention that cross-diagonal elements are Complex numbers.
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Summary of basic concepts
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statistics are 
necessary.

Covariance matrix:
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Scattering matrix

Data are stored in complex form, that is real plus imaginary part
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Covariance matrix
 An easy way to use this is by creating one image each element of the covariance 

matrix
 Pay attention that cross-diagonal elements are Complex numbers.
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Target decomposition
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What is a decomposition?
Wikipedia definition: Decomposition (or rotting) is the process by which organic 

substances are broken down into simpler forms of matter.

Collins definition:
decompose (ˌdiːkԥmˈpԥʊz)

1) to break down (organic matter) or (of 
organic matter) to be broken down physically 
and chemically by bacterial or fungal action;

2) chem to break down or cause to break 
down into simpler chemical compounds

3) to break up or separate into constituent 
parts

4) ( tr ) maths to express in terms of a 
number of independent simpler components, 
as a set as a canonical union of disjoint 
subsets, or a vector into orthogonal 
components 
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What is a decomposition?

 On the scene, several targets 
are combined/mixed each other 
inside the resolution cell AND the 
averaging window.

 It makes image interpretation
and retrieval of parameters very 
complex

 We want to use polarimetry to 
separate (or decompose) the 
different contributors and extract 
some physical interpretation.
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What shall we decompose?

As for the basic concepts of 
polarimetry, we should separate 
deterministic and statistical

targets

1) Coherent Decompositions

2) Incoherent decompositions
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Coherent decompositions:
Scattering matrix
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Coherent decompositions 

 Definition: they are called COHERENT because they separate the 
contributions at the sub-pixel level starting from the scattering matrix and 
the contributors sum “coherently” (i.e. with the phase)
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Absolute phase

c1, c1, c1
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Pauli coherent decomposition

Odd-bounce Even-bounce
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Even-bounce
45° oriented

The corner
is 45o oriented
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Pauli RGB image around Buenos Aires (ALOS-1). The polarimetric information is coded 
in the colours. As you can notice we can use colours to differentiate between targets. 

Data courtesy of JAXA. 

Pauli decomposition
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Incoherent decompositions:
Covariance matrix
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Incoherent decompositions 

 Definition: they are defined incoherent because they separate the 
contribution starting from the coherency matrix, therefore the components 
sum each other WITHOUT the phase

 This is based on the assumption that the components/contributors are 
independent of each other and therefore they sum incoherently (without 
phase).
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Incoherent decompositions:
Non-model based
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Diagonalising the coherency matrix: Cloude-Pottier

It is based on the diagonalisation of the coherency matrix which is Hermittian 
positive semi-definite

* [ ] 0TI T  
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* * * * *
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Eigenvalues Eigenvectors

 Each component represents a deterministic target (it could be expressed by 
a single scattering matrix): i.e. each component is a rank one matrix. 
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Cloude-Pottier: interpreting eigenvalues
Nice math, but what all this eigenvalues tells us?

We can define a probability of each eigenvalue:

32

32







A

 



3

1
3log

i
ii PPH

321 



 i
iP

We can calculate the Entropy: 
of the scattering process

We can also calculate the Anisotropy:

An interesting property is that the parameters on this slide are basis invariant: 
i.e. the same results are obtained independently on the basis used to represent 
the scattering vector. This is a property of diagonalisations… and we like it, 
since it makes the result more general.
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Cloude-Pottier: interpreting eigenvalues

 The entropy tells us the confusion of the scattering process. If there is a 
component (i.e. one eigenvector) that is much stronger than the other, than 
the entropy is LOW (close to 0) and we know there is only one dominant 
target in the scene (i.e. this is a more deterministic problem that could be 
treated with a single scattering matrix). An example is a man-made target.

 If the entropy is HIGH (close to 1) there are 
three or more equally strong scattering 
processes in the scene that they confuse a lot 
the polarisation of the pixels. An example is a 
forested area.

 The anisotropy tells about the imbalance of 
second and third scattering mechanisms 
(eigenvalues). It is used to complement the 
entropy… you will learn more next lecture.
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Cloude-Pottier: interpreting eigenvectors

 What about the eigenvectors? They are 3 scattering mechanisms 
orthogonal each other

 Their representation (i.e. the numbers in the vector components) is not 
basis invariant and we need to select a basis to visualise them (since they 
are vectors)

 The Cloude-Pottier decomposition consider using the Pauli basis and 
perform a parameterisation based on spherical coordinates (with unitary 
radius)

cos ,sin cos ,sin sin ,    i=1,2,3i i
Tj j

i i i i i iu e e         

Scattering vector in Pauli basis with spherical coordinates

Each one of the eigenvectors can be represented this way
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Cloude-Pottier: interpreting eigenvectors
1) The parameter α is related to the type of scattering mechanism (it can be 
easily proved substituting the values of alpha in the previous parameterisation)

2) The parameter β is related to the orientation of the scattering mechanism 
(also can be easily proved substituting the values in the previous 
parameterisation)

3) The parameters ε and η are phases with complicated physical interpretation 
(but they stay the same once decided the target to represent)
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It is useful to calculate an average α, 
obtained as the result of a Bernulli process 

Cloude-Pottier: interpreting eigenvectors
 We have three α angles in the decomposition (one from each scattering 

mechanism). Which one shall we use? 
 If the entropy is low (one dominant target) we can use the dominant α
 If the entropy is high, the process is very confused and it is better to use 

an averaged value for α.
 We consider a Bernulli process to average the α (i.e. we do a weighted 

average where the weights are the probability of the eigenvalues).

 The same is for β, we can consider dominant or averaged values 
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Cloude-Pottier: Buenos Aires (ALOS-1)
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Cloude-Pottier: Buenos Aires (ALOS-1)
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Cloude-Pottier: Buenos Aires (ALOS-1)
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Incoherent decompositions:
Model based
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Yamaguchi decomposition
It is based on a model for the backscattering of forested areas.

The total return is decomposed in
Surface, Dihedral, Volume and Helix scattering.  

volume

dihedral

surface

         surface dihedral volume helix
T T T T T   

In order to solve the problem with the 
orientation of the dihedrals, it perform a 

correction for the orientation angle

It rotates the partial target in order to give it 
an overall horizontal orientation
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Yamaguchi decomposition: Buenos Aires (ALOS-1)
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Practical



Armando Marino

PolSARPro

 Today you will use the POLSARpro software to investigate some 
of the polarimetric theory toy have studied.

 Pauli decomposition
 Covariance and Coherency matrix
 Claude Pottier decomposition
 Yamaguchi decomposition
 Compact pol (Raney decomposition)
 Ship detection 
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Python

 Tomorrow you will use Python to process polarimetric data.

 Pauli decomposition
 Covariance and Coherency matrix
 Claude Pottier decomposition
 Ship detection 

 You will be give the code with missing parts to complete.


