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Preliminary results of Sea Ice Classification using combined Sentinel-1 and Sentinel-3 data
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Combining C- and L-band SAR imagery for automated sea ice classification and segmentation

By: Johannes Lohse and Wolfgang Dierking

High resolution L- and C-band polarimetric variability during MOSAiC

By: Malin Johansson, S. Singha, G. Spreen, S. Howell
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Key objectives

Multi-sensor sea ice type classification, separation and characterization 

• To develop new (fused) algorithms (combinations of methods or frequencies)

• Combine SAR + optical images (Sentinel-1 missions) for improved sea ice classification 

• Investigate and quantify the benefits of combining C- and L-band SAR imagery for automatic sea ice type 

separation

• New polarimetric parameters for improved ice type characterization and separation

• Multi-frequency (X-, C- and L-band) aligned SAR imagery for ice type classification and iceberg detection

Application of multi-sensor algorithms

• Improve separation of ice types and ice-water

• Testing applicability of future missions (ALOS-4, NISAR, ROSE-L)

• Improve ship safety and reduce travel time by providing reliable and up-to-date sea ice information
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Innovations

(Results)
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Innovation (Wiehle et al.)

• CNN classification, 6 classes

• Multi-year ice Open water, smooth

• First-year ice Open water, rough

• Young ice  Rough ice
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Innovation (Wiehle et al.)

• Open water challenging to classify in SAR

• High dependency on acquisition parameters

• Difficult to train

• Fusion: improved classification of open water

SAR only classification

Fused
classification

Open 

water

Ice with

dry snow

cover
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Innovation (Lohse and Dierking)

Only the combination of C- and 
L-band captures Young Ice and 

Open Water within lead 
systems correctly

L-band or the combination of 
C- and L-band is clearly best 
at detecting Deformed Ice

(C+L)-band resultsL-band resultsC-band resultsC-band

L-band
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Number of image pairs for 
which (C+L)-band 

segmentation produces 1 
more statistically significant 
cluster than L-band stand-

alone segmentation

Increasing

sensitivity

more clusters

Innovation (Lohse and Dierking)

Use distance measure to find maximum 
number of statistically separable clusters for:

• C-band

• L-band

• (C+L)-band
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Innovation (Lohse and Dierking)

• L-band is always better at detecting Deformed Ice than C-band

• Combination of C- and L-band is equally good or better

• Results for Leads and Young Ice are more variable:

• Sometimes C-band is better, sometimes L-band is better (likely depending on small-scale roughness of YI)

• Combination of C- and L-band is always best

• L-band maintains slightly better separation of Level Ice and Deformed Ice during melt onset

• Segmentation: (C+L) contains significantly more information than single-frequency approaches

• On average 2.4 more clusters than C-band stand-alone and 1.0 more clusters than L-band stand-alone
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Innovation (Johansson et al.)

Polarization difference (PD): VV-HH usefulness for sea ice type characterization -> separation of young ice 

• Open water -> high PD   

• Newly frozen sea ice -> high PD

• Young ice -> low PD 

• Deformed ice -> large variability 

10 Nov

20 Oct10 Nov 2019C-band 10 Nov20 Oct
L-band 
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Innovation (Johansson et al.)

L-band: 

PD std small in freezing season

Larger std but same mean values in early melt 

season

Positive temp -> std and mean values increased

Temp

C-band:

• PD std large in freezing season

• High mean and lower std values for young ice regardless of 

low or high backscatter

• Level ice -> increased std with positive temp

• Deformed ice -> decrease std
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Innovation (Johansson et al.)

Polarization difference

• Can be used separate young ice types from surrounding sea ice in both frequencies

• L- and C-band have different dependencies on season and sea ice types

• Reduced sensitive to incidence angle variations and noise

• Possible from RCM, i.e. the HH+VV mode

• The co-pol channels are also preferable for melt seasons for melt pond studies

• Results transferable to data from, e.g., N-ICE2015 and CIRFA cruise 2022 

• Snow cover thicker during N-ICE2015

• Smaller L-band pixel spacing could aid the deformed sea ice extraction

13
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Challenges and knowledge gaps

Multi-sensor synergy

• We have better coverage (temporal + spatial) when combining multiple sensors

• Several hours time delay between acquisitions

• Critical especially for ocean applications with quickly changing parameters

• Areas with high sea ice drift speeds (e.g. Fram Strait)

• Data alignment can produce good results, but multi-sensor data with temporal gaps are challenging

• SAR + optical satellite combination might be advantageous for multiple sea ice tasks 

– Clouds, fog and darkness

 How to overcome the time separation? 

Summer – melt season

• The use of the two co-pol channels are preferable

• Possible from RCM, i.e. the HH+VV mode, or compact pol missions 

• Polarization difference can be used to separate young ice form thicker sea ice – RCM or compact pol data
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Challenges and knowledge gaps

• How can we best assimilate different sensors and benefit from their strengths

• IR thin vs thick ice -> heat fluxes

• Optical -> open water, snow covered sea ice, ridges (with favourable illumination)

• SAR -> penetrates (?) snow, can see the ice structure, ice water separation is challenging

Example of multi-frequency SAR image 

combination
Belgica Bank (NE Greenland), melting phase: first-

year ice (darker signature) easier to distinguish from 

multi-year ice (brighter areas) at L-band

Courtesy: Nick Hughes and Frank Amdal, Norwegian Ice Service
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Outlook and recommendations

• Time separation between different SAR (satellite) sensors 

 Tandem mission for ROSE-L is preferable (for automated ice type classification)

• Fleet of mixed micro-satellites (think Capella Space) might be an option when time delay <1h is ok

• Consider using RCM mode HH+VV over polar regions in summer

• Combine sea ice deformation and thermodynamics for sea ice classification/separation

• Operational L-band SAR constellation

• Identify how L-band SAR can contribute for improved sea ice products

• ALOS-2 has small pixel spacing – is this more important than resolution? 

• Move towards integrated systems: (satellite) observations – assimilation – model

• Collaboration between different sensor acquisitions 
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Contributing work

Tracking backscatter signatures of individual sea ice floes - Using in-situ drift observations

By Catherine Taelman, Johannes Lohse and Anthony P. Doulgeris 

UiT The Arctic University of Norway

The CIRFA-2022 Cruise to the western Fram Strait: Objectives, Ground Measurements, and Preliminary 

Results

By: T. Eltoft, C. Taelman, M. Johansson, J. P. Lohse, S. Gerland, and W. Dierking 

CIRFA  - UiT the Arctic University of Norway

Quadruple Helix Framework for Sea Ice Monitoring: Next Steps

By: Ekaterina Kim. Roger Skjetne, Knut Høyland

NTNU
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Key objectives

Collect In-situ data to aid remote sensing tool development

• Aid developments and validation of new sea ice algorithms

• Dedicated remote sensing validation campaigns

• Temporal and spatial overlap

• Instantaneous ice drift validation 

• Deployment of drifters on sea ice and icebergs

• Tomographic radar measurements

To build a multiscale digital method and system that integrate remote sensing, numerical models and in-

situ data

• Improved spatial and temporal resolution to achieve more precise forecasting of ice conditions in the Arctic 

• including better understanding of long-term variations in polar ice cover

• Improve design and operation of offshore wind infrastructure 
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In-situ data campaigns

MOSAIC expedition Oct 2019 – Oct 2020

• Goal to continually monitor changes in the coupled ocean-ice-

atmosphere system throughout the seasons

21

Sea ice Environmental Research Facility 

(SERF), Uni Manitoba 

Icebird (2 yearly)
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Innovations

(Results)
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Innovation (Taelman et al.)

17 sea ice drifters &
3 iceberg drifters

- Full trajectory = sea ice drift and
ocean current observations

- Wave spectra

- Sea ice part covers transition from 
freezing conditions to melt onset 
(April – July)

- Drone deployment

Drift observations April – December 2022

Greenland Sea

Fram 
Strait

© William Copeland
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Innovation (Taelman et al.)

• Expand the tracked area by manually identifying 
distinct ice structures in the vicinity of the drifter 
location

melt onsetfreezing conditions
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Innovation (Taelman et al.)

Example SAR timeseries for 1 drifter ( )

• Drones can be used to deploy drifters away from ships/land -> 
larger spread

• Larger number of drifters enables study of the temporal 
evolution and incident angle dependence of the radar 
backscatter for drifting ice floes, even in the melt season

• Preliminary results show that:
• Freezing season: Radar backscatter variation is mostly 

due to incident angle

• Melt season: Radar backscatter changes rapidly and the 
internal spread is larger. Difficult to attribute variations 
to either physical changes on the ice, or to incident 
angle.
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Innovation (Eltoft et al.)

Near real time validation of ship-based sea ice observations with 

Classifier results.

Sentinel-1: 2022/05/04 07:29 UTC

IceObs: Deformed Ice, small patches of Level Ice  or Open Water

Classification: Deformed Ice

100x100km April 22nd–May 9th
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Innovation (Eltoft et al.)

• The VTOL drone could take-off and land on the heli-deck. 

• Its long-distance flying capability allowed for km-meter wise optical mapping 

of sea ice with, 50 cm spatial resolution.

• Coinciding in time and place with SAR acquisitions

• Instantaneous sea ice drift estimates – Harmony mission 
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Snow Micropenetrometer

Drone equipped with an 
UWB Snow radar

Innovation (Eltoft et al.)

Multi-scale snow measurements

• Snow radar drone

• Snow depth (Magnaprobe)

• Snow hardness (Snow Micropenetrometer)

• Snow pits
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Innovation (Eltoft et al.)

• High-resolution ground-based radar signatures to be compared to satellite data

• Discriminate sources of scattering within a layered medium consisting of snow on sea ice

• Testing assumptions associated with the radar response of sea-ice at C band
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RGB

Photo: S. Løset

Level ice

Deformed ice

• AI based segmentation of optical images from ships 
(Panchi et al, 2021)

• Retrieval of ice parameters

• Customized output

Detection of 

Level ice
Deformed ice
Icebergs

Pancake ice
Brash ice

Ice floe
Melt ponds

Iceberg

Level ice

Deformed ice

Innovation (Kim et al.)
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Innovation (Kim et al.)
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Human ice 
expert

AI - observer

Citizen scientist 
3

Citizen
scientist 1

Citizen scientist 
2

Photo from the Cruise Report

Normal images Challenging for novices Challenging for AI

Tested during GoNorth-2022 (Panchi et al, 2023)
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Challenges and knowledge gaps for in-situ data

For drifting sea ice is temporal overlap between satellite images and in-situ data collection very important 

• Time separation without in-situ drift make validation and training data extraction challenging

• Drift station data collection over time can help cover multiple seasons

8 h time separation

Radarsat-2
PALSAR-2

5 h time separation

PALSAR-2

RADARSAT-2 Data and products 

© MDA Ltd. 2019 All rights reserved
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Challenges and knowledge gaps for in-situ data

Rapid changing surfaces (melting in summer, ice drift year-round)

• Time separation between different satellite sensors and in-situ data collection 

• High temporal cover during in-situ data campaigns – support from satellite service providers

• JAXA-ESA LC-project
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Challenges and knowledge gaps for in-situ data

Upscaling - downscaling

• Different modes (fine + coarse evolution) help with upscaling and downscaling

• How can we go from in-situ -> drones -> airborne -> satellites -> models? 

• Large spatial possible cover over the site – help mitigate issues with overlapping drifting in-situ campaigns
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Outlook and recommendations

Targeted in-situ data collection

• In-situ data campaigns targeting satellite data product validation 

• Permanent stations overlapped with repeated satellite image overlaps

• In-situ collection should be adapted to solve the scientific question 

• Connect ground radar observations -> drones -> SAR (other satellite images) for upscaling

• Consider overlaps in time and space for upscaling

• SAR, Altimetry, PMW, IR, Optical sensors for satellites, drones and airborne sensors

Drone usage

• Increased use of georeferenced drone images for training and validation of satellite data products

• Plan drone flights to relate to the science and operational question

• Use drones for instantaneous sea ice drift retrieval - connect with SAR image observations (Harmony)

• Drones have long-distance capability allowed for km-meter wise optical and IR mapping 

• Can fly below cloud cover and fly simultaneous with SAR (other satellite sensor) acquisitions 
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Outlook & remaining knowledge gaps

The role of snow must be better understood 

• Snow metamorphism and the effect on the radar signature (perhaps) not fully understood 

• Also under dry freezing conditions

• Wind compacted layers

• Rain on snow events

• Ice lenses within the snowpack and brine layer at the snow-ice interface, e.g., February N-ICE2015

• Might mostly relate to C- and X- band, L-band less affected

Summer season

Drifters

• Deploy more drifters on underrepresented sea ice 

• First year ice (thinner)

• Fast drifting sea ice

• Data arrays, e.g., MOSAiC, NICE-2015 etc  (drifting and deformation on a high-resolution scale) 
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