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Theme : Sea Ice
Topic . Sea Ice Drift and Deformation (SIDB)

Demchev Denis, Frost Anja, Karvonen Juha, Korosov Anton, Xiao-Ming Li
+ slides from Bouchat Amelie and Helfrich Sean
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Contributing work

« Juha Karvonen, Copernicus Marine Service SITAC SAR-Based Baltic Sea Ice Products (FMI)

« Denis Demcheyv, Leif Eriksson, Anders Hildeman, Wolfgang Dierking, Investigation of Multifrequency SAR
Image Alignment by Ice Drift Compensation In The Marginal Ice Zone (Chalmers University of Technology,
AstraZeneca, UIiT, AWI)

* Xiao-Ming Li, Sea Ice Cover And Drift By Sentinel-1 SAR And The Support for Arctic Shipping (Aerospace
Information Research Institute)

« Anton Korosov and Marcel Kleinherenbrink, Potential Application of the Earth Explorer 10 candidate Harmony
for Sea Ice Model Validation, (NERSC, Delft University of Technology)

« Amélie Bouchat, Sea-ice deformation derived from the RADARSAT Constellation Mission and Sentinel-1 SAR
Imagery at 24- and 72-hr intervals from 2017 to 2021 (McGill Univ.), ICWG-DA-11

 Sean Helfrich, Sea-ice deformation derived from the RADARSAT Constellation Mission and Sentinel-1 SAR
Imagery at 24- and 72-hr intervals from 2017 to 2021 (NOAA), IICWG-DA-11

« Korosov et al., Towards improving sea ice deformation predictability (NERSC), The Crysophere discussions
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Key objectives

Development of SID algorithms

« To develop a sea ice drift algorithm (two sequential SAR GRD images + pattern matching)
« To validate the algorithm (e.g., on new MOSAIC data)

« To test parameters of the algorithm (e.g., temporal intervals between images)

Application of SID algorithms

» Operational sea ice monitoring with resolution higher than on the ice charts

« Producing longer time-series of ice drift

« Alignment of multi-frequency (C- and L-band) SAR imagery for ice type classification

« Alignment (‘morphing’) of multi-temporal C-band SAR imagery for more robust ice type classification
 Calibration / validation of sea ice models

« Testing applicability of future missions (Harmony)

« Assimilation into sea ice models
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Innovations
(Results)




Sea Ice Cover And Drift By Sentineldd SAR'And The

Support for Arctic Shipping (Li et al\)

Applying a combination of Feature Tracking and Pattern Matching to retrieve sea ice drift based
on Sentinel-1 EW HV sequential data, the results were validated against MOSAIC buoys in 2020.

Feature
Tracking

Interpolation

Pattern
Matching

Quality control
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Temporal  S1 pairs Error bias (RMSE)
seasons

Intervals (vectors) cm/s °
Jan-Jun, 4,765
Oct-Dec 16 -24h (15,254) 0.00 (0.57) 0.27 (4.73)
Jul-Sep <16h 499(644) 0.52 (1.85) 4.62 (20.73)

Qiu and Li (2022), IEEE TGRS
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Sea Ice Cover And Drift By Sentineldd SAR'And The

Eesa

Support for Arctic Shipping (Li et aN\)

 Apartfrom theapplied algorithms,
sequential SAR images, especially for high variability.

the accuracy also relies on the temporal intervals between

Qiu and Li (2022), IEEE TGRS
Estimated “Approriate” Temporal Intervals
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Simplified SID algorithm diagram

100m
500m L L
_ agn. |—m! . »
((:20 o LR Inter- |LR_ |Optical | H Data SID
1:)?]p ORB SID polate SID flow SID quality
m DQ->
@ 13| Magn. * 5
500m ‘
100m
Karvonen: ESA SEASAR 2023
_— Il a2 — N 4 ]l = 1111 — 8 = = b= 11 2 22 E = Bm ©=m fmm [wl] > THE EUROPEAR SBACE AGENCY



An example of SID (20230326 16:05:47 20230327 16:04:52)
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NOAA STAR Sea Ice Drift Daily Product

The NOAA STAR has developed 1-day sea ice drift
motion product based on SAR imagery

® The amount of daily coverage depends on the SAR
coverage

® Vector locations are calculated on 12.5 km EASE grid
positions
Relies on wide swath SAR imagery from Sentinel-1

and the Radarsat Constellation Mission
The product is currently used internally at NOAA
and the U.S. National Ice Center

® Plans to produce and archive it as part of the NOAA
CoastWatch / PolarWatch Program

SAR imagery can provide all weather, high res
ice motions and ice dynamics estimates

Drift calculated for 02 to 03 Dec 2021

SARIceDrift EG125 2021337T0000 202133772359

Day 1
2021-12-02 00:09 UTC
2021-12-02 23:06 UTC

Day 2
2021-12- g

03 1 UTC
2021-12-03

0:2
2:42 UTC

4 30 km/day

} 20 km/day
t 10 km/day

# Image Pairs: 245
Mean: 9.99

N= 22721/ Skip: 15
Processed at NOAA/NESDIS/STAR: 04 Dec 2021 09:427

Helfrich et al. (NOAA), IICWG-DA, 2023
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'CSd

New deformation data set

Lagrangian
deformation estimates,
at multiple temporal
and spatial resolutions

Bouchat et al. (McGill Univ.), ICWG-DA, 2023
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Investigation of Multifrequency SARfmage.Alignment Cesa

by Ice Drift Compensation In MIZ (Demchev et al.)

* A new algorithm for sea ice SAR imagery alignment has been proposed and tested in presence of granularice
covers consisting of relatively small, thin ice floes, which are common in the marginal ice zone

Master SAR image (L-band) Drift retrieval from L-C pair Aligned L image

distance, km
distance, km

-30.0 -20.0 -10.0 -20.0
0p, dB 0p, dB
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Improving predictability of sea ice déformation

(Korosoy, et al.)

Sea ice deformation (CMEMS) is Forecast, NO DA | Observations
.. . . o 3 a

assimilated into a sea ice model 2021-01-16 .

(neXtSIM).

2021-01-15

A. Total deformation

e
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Improving predictability of sea ice déformation

(Korosoy, et al.)

Area covered by assimilated data is shown by gray color. 24 hour later (figure below) we compare the

observations (left) with forecast of deformation (middle). The model realistically extrapolates assimilated
LKFs (shown by maps of MCC on the right).

Observations Forecast with DA MCCpa — MCCnopa

~
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Potential Application of Harmony fof Sealece Model Cesa

Validation (Korosov et al.)
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e NeXtSIM: simulating
instantaneoussea ice drift.

e Harmony E2E simulator:
simulating Doppler shift signal.

* Inversion1l: Raw Dopplershift
to sea ice drift and deformation

* Inversion2: Cleaned Doppler
shift to sea ice drift and
deformation

Maps of shear (t) computed from
the two neXtSIM runs (upper and
lower rows) from original velocities
(left) and from Harmony denoised
velocities UM? (middle) and UA
(right).
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Challenges and knowledge gaps for'SID algorithms Eesa

High thermal or speckle noise
« How to suppress noise without loosing resolution?

« What are implications on ice drift and deformation accuracy?

Too low contrast (wet snow in summer, broken ice in MIZ) for a robust MCC
* How to improve informativeness of a SAR image patch

* How to efficiently utilize HH and HV simultaneously?

Rapidly changing surface (melting in summer, floe rotation and heterogeneous drift in M12)
« How to adapt time delta between images and what is the optimal one?

Inherently different patterns of C- and L-band SAR imagery
 How to compare (MCC) and how to evaluate alignment?

17
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Challenges and knowledge gaps fortSID applications Eesa

Alignment algorithms: floe rotation (and other fast surface changes) complicates image ‘morphing’
« How to generate (morph) images more efficiently?

« How to evaluate aligned multi-frequency imagery? (a new metric is needed)

No proper Lagrangian SID product from Sentinel-1 and/or RS2 and/or RCM

* How to calibrate / validate perform model validation in recent times (with better weather forecasts)?

BIG DATA requires more hardware resources
« How to optimize algorithms?

« Where to get resources?

Loss of S1B and reduced data coverage

« How to access RCM and adapt algorithms for RCM?

18
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Outlook and recommendations (algorithms)

Algorithm improvement

« Use Al forice drift retrieval

« Develop methods for post-processing (discarding, optimization) of drift vectors
« Improve intervals between images for ice drift

« Optimize algorithms for parallel processing (AND allocate more resources for processing)

Input data

« Launch operational L-band SAR constellation

Better products
* Increase temporal resolution for ice drift products.
» Develop high-resolution, long-termice drift dataset

19
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Outlook and recommendations (applications)

« Combine SID and thermodynamics for SIT retrieval.

« Move towards integrated systems: (satellite) observations — assimilation — model
« Use SSIM as a metric for alignment evaluation

« Test SID and alignment algorithms under various weather and drift conditions

« Reduce noise in Harmony data

« Use Harmony data for detection of MIZ (mobile ice despite high concentration)

« Estimate and improve practical predictability of linear kinematic features

« Develop new metrics for model calibration / validation using ice drift and deformation data

20
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. Cryosphere
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Laboratory «

Polar Thematic Exploitation Platform:
https://cvl.eo.esa.int/node/30

PROJECT PARTNERS

* Nansen Environmental and Remote Sensing Center
*+ NORCE Norwegian Research Centre
* The Norwegian Meteorological Institute

* Science and Technology

* The Norwegian Polar Institute v -
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https://cvl.eo.esa.int/
https://github.com/CryosphereVirtualLab/
https://cvl.eo.esa.int/node/30

We offer the
following workflows:

WFI:

Online data search
3D-visualization
Geo-transformation

Download of the selected
products

WF2:

Online data search and download

Installation of virtual machine
on your PC

Analysis of the selected products
locally

WE3:

Online data search

Online analysisina Jupyter
notebook at P-TEP

WF4:

Scheduled batch processing of
data at P-TEP including
automated search and
visualisation
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Cryosphere Virtual Laboratory

* Exploitation, analysis, visualization and sharing of data
* Satellite, in-situ and model data

* Collaboration between cryosphere scientists

* Reduce the time and effort for data searching

* Develop own tools for processing and analysis
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Theme : Sea Ice
Topic : Sea Ice Type (SITy)

Demchev Denis, Frost Anja, Karvonen Juha, Korosov Anton, Xiao-Ming Li
+ slides from Bouchat Amelie, Helfrich Sean, Clement Fougerouse

01/05/2023
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Contributing work

 Anja Frost, James Imber, Dmitrii Murashkin, Karl Kortum, Gregorek, Towards Multitemporal Sea Ice
Classification By Means Of Spaceborne SAR Image Time Series (DLR, MARUM)

 Qiang Wang, Malin Johansson, Johannes Lohse, Anthony P. Doulgeris, Torbjarn Eltoft, The Impact of Input
Features in Deep Learning Based Sea Ice Mapping (UiT)

« Tore Wulf, Jargen Buus-Hinkler, Suman Singha, Matilde Brandt Kreiner, Operational SAR-based Sea Ice
Concentration Retrieval Using Convolutional Neural Networks (DMI)

 Sean Helfrich, Sea-ice deformation derived from the RADARSAT Constellation Mission and Sentinel-1 SAR
Imagery at 24- and 72-hr intervals from 2017 to 2021 (NOAA), IICWG-DA-11

» Alexander Komarov, The RADARSAT Constellation Mission data assimilation in ECCC ice prediction system
(ECCO), lICWG-DA-11

« Clement Fougerouse and Anton Korosov, Informativeness of SAR and PMW data for sea ice type retrieval
(ENSG, NERSC), In Prep.

« Denis Demchev, Anton Korosov, Detection of sea ice ridging in first-year ice from Sentinel-1 images and ice
deformation (Chalmers Univ., NERSC), In Prep.
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Key objectives

Development of SITy algorithms (SAR GRD image, image processing)

Robust, high-resolution, all-season

To derive more information from SAR: Ice extent, ice/water, MYI, FYI, YI, OW, rough ice, uncertainties, L2/L3,
SIC, Stage-of-Development, floe size

To include more data on input: SST, multi-temporal observations, AMSR2, wind speed, sea ice deformation
To validate the algorithm: visual inspection, coastal observers, icebreakers, ice charts (also cross-validation)

Deep learning (U-net)

Application of SITy algorithms

Operational sea ice monitoring with resolution higher than on the ice charts
To support ship navigation directly

To combine with drift forecast for predicting optimal ship route

To supportice cervices

To assimilate into models .
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Innovations
(Results)




Tore Wolf, (DMI)

Methodology

: Training dataset:

. We have compiled a training dataset consisting of 1202 unique matches of Sentinel-1 EW
. imagery and manually produced regional ice charts from 2018 up to and including 2021,
covering Greenland waters (DMI ice charts) and parts of the Canadian Arctic (CIS ice

. charts). The dataset also includes resampled AMSR-2 brightness temperatures.

: The DMI and CIS ice charts contain information about sea ice concentration (SIC), stage
of development (SoD), also called ice type, and floe size (FLOE).

The compiled training dataset is based on two publicly available datasets that were
. produced in the ESA-sponsored Al4Arctic project:

https://doi.org/10.11583/DTU.13011134.v3 (ASIDv2)

(ASID Challenge)

Training dataset overview

Example scene, May 16th, 2021

Ice chart polygon map Ice chart look-up table

5 oy \ Sentinel-1 HH

00N

AMSR-2 brightness temperatures

6.9 GHz, H-pol 18.7 GHz, H-pol

89.0 GHz, H-pol

@ ® The Danish
_ ® Meteorological

Institute

: CNN Overview:

: The CNN is designed as a multi-tasking model that is trained on multiple sea ice

. parameters simultaneously. The CNN follows a U-Net-like encoder-decoder structure. The
. encoder network consists of 6 stages, each comprised of multiple inverted residual blocks,
. for multi-scale feature extraction. The CNN has three decoders, which outputs

. pseudo-probabilistic distributions over a predefined set of classes for each sea ice
parameter - SIC, SoD and FLOE.

. SIC prediction and uncertainty estimation:

: We calibrate the pseudo-probabilistic SIC output of the CNN by using /abel smoothing
(during training) and temperature scaling (post-processing). Given a well-calibrated model,
: the SIC prediction and the accompanying uncertainty is computed as a weighted average
. and a weighted std., respectively, of the predefined set of SIC classes, with weights given
. by their respective probabilities predicted by the model.

Sentinel-1 + AMSR-2

bl‘; L:u
gy
Encoder ey — Decoder (x3)
Convolutional Concatenated 2x2 Strided ‘nearest’ Skip
Block(s) Features Ci L 9 C

eSa
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CNN Output - SIC [%]
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Results tore wolr, (ovi)

. 80 carefully selected examples from the dataset have been set aside
. for predictive performance and uncertainty estimation evaluation.

SIC predictive performance:

Our model achieves a RMSE of 4.1% (freezing season), 5.1%
. (melting season) and 4.6% (overall) when evaluated against the test
. dataset at pixel level.

. SIC uncertainty estimation:

. Training our model with label smoothing improves the calibration of
. the SIC output, but the trained model is slightly ‘under-confident'.

. This tendency is mitigated using temperature scaling.

Sea Ice Concentration, single scene example, August 25th, 2020

Sentinel-1 HH

180° 500y 120 60°E

Ice Chart - SIC

CNN SIC vs. Ice Chart SIC SIC Reliability Diagram

1.0

W Freezing season (October-March) —e— Before temp. scaling

Melting season (April-September) ~&— After temp. scaling
® Al seasons ,r+ 0.9
08
T v

0.7
' 06

Accuracy
°
n

0.4
2
¢
. 1 0.3
0.2
+, 0.1
Ll B
0.0
0 10 20 30 40 50 60 70 80 90 100 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ice Chart - SIC [%] Confidence

0, (98) CNN Output - Uncertainty
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CNN Output - SIC
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»
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Stage of Development (ice type), preliminary mosaic example

USNIC Primary Stage of Development*
Jan 24th, 2020

Glacier Ice

Old Ice

Thick FY Ice

Thin FY Ice

Young Ice

New Ice

Ice Free

CNN Output - Primary Stage of Development
Jan 20th - Jan 26th, 2020

Glacier Ice
Old Ice
Thick FY Ice
Thin FY Ice
Young Ice
New Ice

Ice Free
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The Impact of Input Features in Deep Learning Based Cesa
Sea Ice Mapping (Wang et al.)

(a)

« Water ice boundary is well delineated by both the baseline
and the advanced model

 The advanced model can identify the newly formed ice

better than the baseline model (see areas marked by red

rectangles)

» Both baseline model and the advanced model (adding SST

as feature input) may mis-classify the smooth ice as water,

shown in the green rectangle in Fig. 2c

: 2 Z{;?, s g
Figure 2: From left to right: HH (in dB), HV (in dB), baseline model inference, and advanced model inference for the four Sl example images. The a- d
letters corresponds to the Scene IDs in Tab. I. Water is blue and ice is white. Regions of particular interest are highlighted by colored rectangles. 30
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Supervised Training Dataset Sean Helfrich (NOAA), ICWG-DA, 2023 @esa

- 160 initial labeled images
- Radarsat-2 ScanSAR Wide azimuth . >

4

and range multilook images and
corresponding labels
- From Beaufort Sea, April to Nov 2014
- Sigma-naught 50 m x 50 m pixel
spacing, HH only
-~ 500 km x 500 km scenes
(~10K x 10K pixel images)

- 30 images set-aside for validation/testing UNet CNN
- Labels - ice or no ice; “no-ice” interpreted  / a2 o MDA e
as navigable by ship (thin ice possible) RADARSAT-2 B
i . ScanSAR Wide Image
-  Separate models trained on three input types: B
- Native, Log Transformed, and Log 8 b R O
Transformed/Rescaled Al Probability of

Ice Detection

Wide scan SAR RADARSAT-2 Image. Previously approved by NGA for public release, 21-030.
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Sea ice classification on single SARfacquisitions,

Anja Frost (DLR)

Reguirements:

« Automatic approach
* Providing results in near real-time

Core of the classification:

» adjusted UNET++ convolutional neural network [1]

 Sentinel-1 channels are divided into tiles, classified,
and then the results are joined back [2, 3]

Qutput:
Six ice types: Multi-year ice, first-year ice, young ice,
open water (calm), open water (rough), and rough ice

Deficiency:

« Sometimes, results are inconsistent

[1] Z. Zhou et al., 2019.
[2] D. Murashkin et al., 2021
[3] A. Frost, J. Imber, D. Murashkin, D. Gregorek, M. Bathmann, 2023

Preliminary study using 34 subsequent Sentinel-1
acquisitions taken between Lincoln and Wandel Seas

the s

Multi-year ice concentration [%]

0 100

Multi-year ice data from 12/6/2021 from https://mww.meereisportal.de (funding: REKLIM-
2013-04).
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Classification
06/12/2021 11:25 UTC
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Towards Multitemporal Sea Ice Classification

Basic idea:
-------------- Acquisition 1
FJAchlS‘t‘O“Z — track sea ice from one SAR vaUiSition to the next and collect more
~__ measurements about e.g. a floe Combined classification

~

| oL Peeiecauisonl 3 |Jse the collected data jointly to classify the ice

, 6°00N
“Rloe in acquisjtion 2

(6th + 7th Dec. 2021)
85°00°'N

50°00W

4 Floe in acquisitic;ﬁ“&\ _ _ Q
- »  Frostet al., IEEE OCEANS 2023 publication g
Dree acq“‘s‘t‘f’,&"" includes validation of drift tracking "
Yo v(,&" Multitemporal classification approach: g

imply modelling of discrete probability distributions

over ice type and applying methods from A TR - WA
probability theory ' Lo\ e S

Result: Combined classification better represents the real sea ice situation
Deficiency: More in situ data needed to train and calibrate the CNN
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Informativeness of SAR texture

(Fougerouse C., in prep)

10000
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6000

Concentration

1: l . 4000
gl;I;I;I;Iglgl;lgl;lglglglgl;I;IgI;I;Iglglgl;lglglgl;l;I;I;I;I;I;I;IEIEI;I;I;I;I;I;I;I;I;I;I;I;Igl;l;l;l;l;l;l;l;l;l;Igl
All combinations of SoD and FSD in ASIPv2
Conclusion: Correlation between
Most of categories true and predicted
classify well, but some partial concentration of
categories do intersect 13 SoD_FSD
and should be grouped or combinations
excluded.

Predicted label
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Detection of sea ice ridging in first-y@aricefrom Cosa

Sentinel-1 images and ice deformatlon (Demchev, et al)

s1b-iw-grd-vv-20201222t203955 viirs 20201222 0423 47426 Detection (textures)

)
-20 0;,133 -10 130 140 150 Level ice Ridged ice
Divergence rate — Shear rate ) Detection (textures+deformation)
{
r A ,
| B Conclusion:
’ v Including sea ice
. deformation as input data
\/ Improves ridge detection
— on Sentinel-1 IW data.
-0.02 Ol.j)hO 0.02 0.00 0.011/h0.02 0.03 Level ice Ridged ice
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Charts anal sis‘

s ANALYSIS EXAMPLE: ~ &esa
WESTERN ARCTIC
JUNE 11, 2021

Aleks Komarov (EEEC), IICWG-DA, 2023

w

(=2}

w

NASA Worldview VIIRS

Ilce concentration [%]

(4}
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Challenges and knowledge gaps

Ice is very diverse and some categories (e.g., new ice) are not sufficiently represented
« How to improve representation of all ice types?

« How to deal with low prediction accuracy, when the category is under-represented in training data?

Inconsistent classification results for multi-temporal images

* How to deal with inconsistent classification and how to improve consistency?

Machine learning is a black box

« What can we learn from DL models?

 What is a physical relation between input features?

« What is the theoretical informativeness of a SAR image (how many ice types can we infer in principle)?

How to improve classification in case of: strong winds, new or young ice?

How to improve quality of label data (e.g., inherent systematic bias in ice charts)? 38
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Outlook and recommendations (algorithms)

More input variables:

« wind speed, solar radiation, VIIRS, AMSR2, RS2, RCM, hi-res SST, altimetry, multi-frequency and multi-
polarization data, sea ice deformation

More output variables:

« probability to belongto an ice category, deformation, ridges, leads, aerodynamic roughness

» Fit-for-purpose ice products (either for ice charts, or for models)

Better training / validation data:

« High resolution verification data from other satellites or in situ coincident with SAR

* Ridges, leads, roughness from altimetry that does not have inherent bias from the manual ice charts
« A solid training dataset (wet ice in summer, windy water) with many scenes (Al4Arctic!)

« Evaluation of ice charts (cross-calibration of ice experts)

39
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Outlook and recommendations (applications)

Support of ice cervices and navigation:

 Integrate the products into ice service routines (use ML-based ice type as input to ice analyst)
« Forecast of ice type and ship route by combining ice type observation with ice drift forecast

« Forecast of SAR image by combining SAR image with ice drift forecast

Assimilation:

« Assimilate different products in different regions (both operational and reanalysis)

« Evaluate of impact from assimilation of various products (SIC vs SoD vs SIC)

« Characterize uncertainty better

Seaice physics:

« From machine learning to human learning: interpret results of ‘black box’ CNNs

« Forward model for sea ice backscatter: SAR image texture is a result of ice deformation history

40
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Theme: Sea ice
Topic: Multi-sensor synergy

Stefan Wiehle et al,

Johannes Lohse and Wolfgang Dierking

Malin Johansson et al.
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Contributing work

Preliminary results of Sea Ice Classification using combined Sentinel-1 and Sentinel-3 data
By Stefan Wiehle, Dmitrii Murashkin, Anja Frost, Christine Kénig, Thomas Konig

Combining C- and L-band SAR imagery for automated sea ice classification and segmentation
By: Johannes Lohse and Wolfgang Dierking

High resolution L- and C-band polarimetric variability during MOSAIC
By: Malin Johansson, S. Singha, G. Spreen, S. Howell
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Key objectives

Multi-sensor sea ice type classification, separation and characterization
« To develop new (fused) algorithms (combinations of methods or frequencies)
« Combine SAR + optical images (Sentinel-1 missions) for improved sea ice classification

 Investigate and quantify the benefits of combining C- and L-band SAR imagery for automatic sea ice type
separation

* New polarimetric parameters for improved ice type characterization and separation

« Multi-frequency (X-, C- and L-band) aligned SAR imagery for ice type classification and iceberg detection

Application of multi-sensor algorithms
« Improve separation of ice types and ice-water
« Testing applicability of future missions (ALOS-4, NISAR, ROSE-L)

* Improve ship safety and reduce travel time by providing reliable and up-to-date sea ice information
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Innovations
(Results)




Innovation (Wiehle et al.)
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Innovation (Wiehle et al.)

5°W ° 5°E 10°E 15°E

« Open water challengingto classify in SAR W 0" SE_IE 15 2 —
« High dependency on acquisition parameters 15 - @
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Distance (km)

vation (Lohse and Dierking)

C-band results L-band results
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Innovation (Lohse and Dierking)

Use distance measure to find maximum
number of statistically separable clusters for:

Distance (km)
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o

Number of image pairs for

C-band which (C+L)-band
L_band segmentation produces 1
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. more statistically significant
(C+L)-band cluster than L-band stand-
£ alone segmentation
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Innovation (Lohse and Dierking)

* L-bandis always better at detecting Deformed Ice than C-band

Combination of C- and L-band is equally good or better

* Results for Leads and Young Ice are more variable:

Sometimes C-band is better, sometimes L-band is better (likely depending on small-scale roughness of YI)

Combination of C- and L-band is always best
* L-band maintainsslightly better separation of Level Ice and Deformed Ice during melt onset

* Segmentation: (C+L) contains significantly more information than single-frequency approaches

On average 2.4 more clusters than C-band stand-aloneand 1.0 more clusters than L-band stand-alone
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Innovation (Johansson et al.)

Polarization difference (PD): VV-HH usefulness for sea ice type characterization -> separation of young ice
* Open water -> high PD
* Newly frozen sea ice -> high PD

0.01

* Youngice -> low PD

10 Nov 2019

,;- ’,—':“‘ .
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Innovation (Johansson et al.)

L-band:

PD std small in freezing season
Larger std but same mean values in early melt

season

Positive temp -> std and mean values increased
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Innovation (Johansson et al.)

Polarization difference

« Can be used separate young ice types from surrounding sea ice in both frequencies
L- and C-band have different dependencies on season and sea ice types
Reduced sensitive to incidence angle variations and noise
Possible from RCM, i.e. the HH+VV mode
The co-pol channels are also preferable for melt seasons for melt pond studies
Results transferable to data from, e.g., N-ICE2015 and CIRFA cruise 2022

Snow cover thicker during N-ICE2015

« Smaller L-band pixel spacing could aid the deformed sea ice extraction
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Challenges and knowledge gaps

Multi-sensor synergy
« We have better coverage (temporal + spatial) when combining multiple sensors
« Several hours time delay between acquisitions

Critical especially for ocean applications with quickly changing parameters

Areas with high sea ice drift speeds (e.g. Fram Strait)
« Data alignment can produce good results, but multi-sensor data with temporal gaps are challenging
 SAR + optical satellite combination might be advantageous for multiple sea ice tasks

— Clouds, fog and darkness

— How to overcome the time separation?

Summer — melt season
* The use of the two co-pol channels are preferable
Possible from RCM, i.e. the HH+VV mode, or compact pol missions

» Polarization difference can be used to separate young ice form thicker sea ice — RCM or compact pol data

54
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Challenges and knowledge gaps

« How can we best assimilate different sensors and benefit from their strengths
* IR thinvs thick ice -> heat fluxes
« Optical -> open water, snow covered sea ice, ridges (with favourable illumination)

« SAR -> penetrates (?) snow, can see the ice structure, ice water separation is challenging

Example of multi-frequency SAR image
combination

Belgica Bank (NE Greenland), melting phase: first-
year ice (darker signature) easier to distinguish from
multi-year ice (brighter areas) at L-band

Courtesy: Nick Hughes and Frank Amdal, Norwegian Ice Service

S1 EW HH-Pol. 20190708 08:10
55
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Outlook and recommendations

Time separation between different SAR (satellite) sensors

Tandem mission for ROSE-L is preferable (for automated ice type classification)

* Fleet of mixed micro-satellites (think Capella Space) might be an option when time delay <1h is ok

» Consider using RCM mode HH+VV over polar regions in summer
« Combine sea ice deformation and thermodynamics for sea ice classification/separation

« Operational L-band SAR constellation
ldentify how L-band SAR can contribute for improved sea ice products

ALOS-2 has small pixel spacing — is this more important than resolution?

« Move towards integrated systems: (satellite) observations — assimilation — model

« Collaboration between different sensor acquisitions

56
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Theme: Sea Ice
Topic: In situ data to support sea ice retrievals

Catherine Taelman et al,
Torbjern Eltoft et al
Ekaterina Kim et al.
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Contributing work

Tracking backscatter signatures of individual sea ice floes - Using in-situ drift observations

By Catherine Taelman, Johannes Lohse and Anthony P. Doulgeris

UiT The Arctic University of Norway

The CIRFA-2022 Cruise to the western Fram Strait: Objectives, Ground Measurements, and Preliminary
Results

By: T. Eltoft, C. Taelman, M. Johansson, J. P. Lohse, S. Gerland, and W. Dierking
CIRFA - UiT the Arctic University of Norway

Quadruple Helix Framework for Sea Ice Monitoring: Next Steps

By: Ekaterina Kim. Roger Skjetne, Knut Hgyland
NTNU
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Key objectives

Collect In-situ data to aid remote sensing tool development
« Aid developments and validation of new sea ice algorithms
« Dedicated remote sensing validation campaigns

Temporal and spatial overlap

Instantaneous ice drift validation

Deployment of drifters on sea ice and icebergs

Tomographic radar measurements

To build a multiscale digital method and system that integrate remote sensing, numerical models and in-
situ data

* Improved spatial and temporal resolution to achieve more precise forecasting of ice conditions in the Arctic
iIncluding better understanding of long-term variations in polar ice cover

Improve design and operation of offshore wind infrastructure

60
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In-situ data campaigns

-|eg1
:t:gg MOSAIC expedition Oct 2019 — Oct 2020
ey 4 4 Oct 19 « Goal to continually monitor changes in the coupled ocean-ice-

> A atmosphere system throughoutthe seasons

TANgMLEy  MOSAIC L
0\ s g
A 83 ¢ T the

LESACY

Photo by Sara Wang

Seaice Environmental Research Facility
(SERF), Uni Manitoba 61
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Innovations
(Results)




Innovation (Taelman et al.)

N7

/Full trajectory = sea ice drift and
ocean current observations

- Wave spectra

- Seaice part covers transition from
freezing conditionsto melt onset
(April = July)

\Drone deployment
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Innovation (Taelman et al.)

* Expand the tracked area by manuallyidentifying

distinct ice structures in the vicinity of the drifter LA PG TIeHE
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Innovation (Taelman et al.)

Example SAR timeseries for 1 drifter (%)

e Drones can be used to deploy drifters away from ships/land -> | 301042022
larger spread “ '

0 o
B

T

e Larger number of drifters enables study of the temporal
evolutionand incidentangle dependence of the radar
backscatter for drifting ice floes, even in the melt season

32

e Preliminary results show that:

* Freezing season: Radar backscatter variationis mostly
due toincidentangle

Distance [km]

 Meltseason: Radar backscatter changes rapidlyand the
internal spread is larger. Difficult to attribute variations
to either physical changes on theice, or to incident
angle.
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Innovation (Eltoft et al.)

2022-mai-04 09:29:00.007

Near real time validation of ship-based sea ice observations with
Classifier results.

Sentinel-1: 2022/05/04 07:29 UTC
IceObs: Deformed Ice, small patches of Level Ice or Open Water

Classification: Deformed Ice

100x 100km @ KPHinS1 footprint
f T : 7 v @ Landfast ice stations
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Innovation (Eltoft et al.)

 The VTOL drone could take-off and land on the heli-deck.

 Its long-distance flying capability allowed for km-meter wise optical mapping
of sea ice with, 50 cm spatial resolution.

« Coinciding in time and place with SAR acquisitions

* Instantaneous sea ice drift estimates — Harmony mission

67
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Innovation (Eltoft et al.)

Multi-scale snow measurements
* Snow radar drone

« Snow depth (Magnaprobe) p
« Snow hardness (Snow Micropenetrometer) | o d
* Snow pits L O

e
-9
Snow depth {m}

<
Y

Drone equipped with an
UWB Snow radar

0.2

Photo by Andrea Schneider

-} | Snow Micropenetrometer

68

= Tl e W L=l = Bl B E2 E === B m fmm [%] - THE EUROPEAN SPACE AGENCY



Innovation (Eltoft et al.)

« High-resolution ground-based radar signatures to be compared to satellite data
 Discriminate sources of scattering within a layered medium consisting of snow on sea ice

« Testing assumptions associated with the radar response of sea-ice at C band

{

-130

-135

-140

z [m]

-145

-150
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Innovation (Kim et al.)

Iceberg

* Al based segmentation of opticalimages from ships
(Panchi et al, 2021)

e Retrieval of ice parameters

Defoqed iIce

Level ice

* Customized output

Image - overlapped with predicted mask Predicted mask

Deformed ice

Detection of
Levelice
Deformedice
Icebergs
Pancake ice
Brashice

Ice floe

Melt ponds

Lewel ice
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Innovation (Kim et al.)
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Challenges and knowledge gaps forin-situ data

For drifting sea ice is temporal overlap between satellite images and in-situ data collection very important

« Time separation without in-situ drift make validation and training data extraction challenging

« Drift station data collection over time can help cover multiple seasons

PALSAR-2

time separation

8 h time separation  5h

RADARSAT-2 Data and products

© MDA Ltd. 2019 All rights reserved 79
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Challenges and knowledge gaps forin-situ data

Rapid changing surfaces (melting in summer, ice drift year-round)

« Time separation between different satellite sensors and in-situ data collection

« High temporal cover during in-situ data campaigns — support from satellite service providers
JAXA-ESA LC-project Radar backscatter evolution ROI 1
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Challenges and knowledge gaps forin-situ data

Upscaling - downscaling
« Different modes (fine + coarse evolution) help with upscaling and downscaling
 How can we go from in-situ -> drones -> airborne -> satellites -> models?

« Large spatial possible cover over the site — help mitigate issues with overlapping drifting in-situ campaigns

74
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Outlook and recommendations

Targeted in-situ data collection

In-situ data campaigns targeting satellite data product validation

Permanent stations overlapped with repeated satellite image overlaps

In-situ collection should be adapted to solve the scientific question

Connect ground radar observations -> drones -> SAR (other satellite images) for upscaling
Consider overlaps in time and space for upscaling

SAR, Altimetry, PMW, IR, Optical sensors for satellites, drones and airborne sensors

Drone usage

Increased use of georeferenced drone images for training and validation of satellite data products

Plan drone flights to relate to the science and operational question
Use drones for instantaneous sea ice drift retrieval - connect with SAR image observations (Harmony)
Drones have long-distance capability allowed for km-meter wise optical and IR mapping

Can fly below cloud cover and fly simultaneous with SAR (other satellite sensor) acquisitions
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Outlook & remaining knowledge gdps

Therole of snow must be better understood
Snow metamorphism and the effect on the radar signature (perhaps) not fully understood
Also under dry freezing conditions
Wind compacted layers
Rain on snow events
Ice lenses within the snowpack and brine layer at the snow-ice interface, e.g., February N-ICE2015
Might mostly relate to C- and X- band, L-band less affected
Summer season
Drifters
* Deploy more drifters on underrepresented sea ice
First year ice (thinner)
Fast drifting sea ice
« Data arrays, e.g., MOSAIC, NICE-2015 etc (drifting and deformation on a high-resolution scale)
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