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Outline

TOPIC 1 – Maritime Security / Navigation / Ship Identification  (Maria Michela Corvino)

TOPIC 2 – Marine Slicks / Spills (Cathleen Jones)

TOPIC 3 – Others (Ben Holt)
Macro Algae / Algal Blooms
Oil in Arctic Ice
Iceberg Detection

-- Coastal Bathymetry
-- Tide & Wind-driven Flooding and Submergence
-- Coastal Erosion (abstract submitted to Methodology & Techniques, M. Gade)
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Breakout Meeting Organization

Breakout #1 Thursday PM  
Maritime Security presentations by submitters (1 hr)
Maritime Security discussion (1 hr) 

Breakout #2 Friday AM1   
Maritime Security discussion (1 hr) 
Slicks presentations by submitters (1 hr)

Breakout #3 Friday AM2  
Slicks discussion (2 hr)

Breakout #4 Friday PM1  
Other topics discussion (2 hr) 

No WEBEX today; will have WEBEX tomorrow
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Maritime Security 

5SeaSAR, May 2023

Main areas of development related to the

operational exploitation of Earth Observation

(EO) for maritime situational awareness can

be identified as follows:

• a more persistent temporal coverage;

• methods improved in speed and accuracy 

for target detection, identification, and 

tracking.

• a faster access to satellite 

acquisitions/vds and reduction of latency 

time, focusing on tip and cuing capabilities 

and cloud processing/on board techniques;
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Moving targets

• Moving targets on SAR images are smeared and defocused

• Techniques exist to detect (GMTI) and focus (ISAR) moving targets

• To detect and extract position and velocity information on the moving target

GMTI

To detect and extract position and velocity

information on the moving target

• on data from multi-channel SAR systems 

e.g. Chirp Scaling (CS) is used to detect and 

focus moving targets

• CS has also been applied for GMTI on 

single-channel data by splitting the antenna 

into sub-apertures (poorer performance 

compared to GMTI from multi-channel data)

ISAR

To focus moving targets and extract velocity information:

• target translational motion compensated 

e.g. through autofocusing techniques (e.g. Phase 

Gradient Autofocus)

• target rotational motion compensated and rotational 

parameters extracted e.g. through Cross-Range 

Scaling:

• slope-based technique for motion parameters 

estimation

• exploiting the quadratic component of the phase 

induced by the rotation motion
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▪ SAR systems are active sensors on moving platform for imaging of stationary targets.

▪ On the other hand, the ISAR approach exploit the target motion and not the radar platform motion, to 

achieve the synthetic aperture needed for radar imaging

▪ This perspective change has a strong impact in the radar image formation. Indeed, the motion of the target 

in unknown and must be estimated from the radar data itself.

▪ In both cases the across-range imaging is re-solved by the relative radar-target motion that can be 

characterized by the composition of:

ISAR imaging

i. Linear relative translation between sensor and 

target → across-range component of the relative 

movement contributes to image formation for all 

target scatterers

ii. Rotation motion → scatterers undergo different 

dopplers depending on the distance from the 

rotation center.



8

For moving targets the application of standard focusing produces defocusing effects that degrade 

range and azimuth resolutions and produce azimuthal displacements. In particular:

Typical SAR defocusing effects

• Range velocity component (Vrad) produces:

• shift of the target imaging along the azimuth 

direction

• smearing along the range (walking through 

different ranges)

• ISAR refocusing process attempts to remove 

smearing effects and to estimate motion 

parameters

• Range acceleration (Aradial) and azimuth velocity (Vtan) 

components produce:

• smearing (walking through different azimuths) and 

defocusing (change of the Doppler rate) along the 

azimuth direction.

• SNR losses
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▪ In ISAR systems, the composition of the radar platform and target movements is modelled as the superposition 

of:

• Relative translation motion between the radar platform and the considered target;

• Relative 3D rotation between the radar platform and the considered target (roll, pitch, yaw)

▪ In order to retrieve these motion parameters and correct defocusing effects, ISAR processing maximizes the 
image contrast by:

o Compensation with respect to translation motion and 

stabilization of a fulcrum point (Autofocus and Phase

Gradient Algorithm (PGA))

o Compensation with respect to rotations (cross-range 

scaling with sub-apertures, and PGA)

fulcrum point
[pixel unit] [pixel unit]

N
o
rm

a
liz

e
d

A
m

p
litu

d
e

(D
b
)

N
o
rm

a
liz

e
d

A
m

p
litu

d
e

(D
b
)

N
o
rm

a
liz

e
d

A
m

p
litu

d
e

(D
b
)

[meters]

Processing outline



10

Examples of results

▪ Inverse SAR processing allows:

o image contrast enhancement

o the removal/mitigation of target 

defocusing due to its motion

o the retrieval of motion parameters of 

the target

• The refocusing is 

strongly dependent on 

the vessel motion

• A contrast improvement 

is generally achieved
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Future – What Can be done in the Future

11SeaSAR, May 2023

1. Improvements to existing ISAR algorithms and workflows in order to increase accuracy in 

the motion parameter estimation and refocusing, in particular for MSA use cases where 

complex rotational manoeuvres of the vessels can determine changes of the imaging planes 

and require more complex cross range scaling algorithms.

2. Possible exploitation of raw data 

3. New ISAR processing solutions:

• exploitation of multiple frames (sub-apertures) showing the same target on different 

image projection planes (i.e. VideoSAR)

• consider bistatic and/or multistatic SAR satellite constellations

• multiple polarimetric channels can be exploited by means of adequate processing 

algorithms capable to enhance the target information space (e.g. different target 

characteristics/scatterers observable by changing the polarization) and to improve the 

accuracy of the estimated motion.
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Spaceborne Video-SAR

- SAR video are generated by focusing adjacent 

portions of the synthetic aperture. Every focused 

sub-aperture corresponds to one frame of the 

SAR video.

- In video SAR the aperture required to achieve 

the desired cross range resolution typically 

exceeds the frame rate period. As a result, there 

can be a significant overlap in the collected 

phase history used to form consecutive images 

in the video. 

- Image formation algorithms based on sub-

aperture extended chirp scaling processing.
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Future – What Can be done in the Future

13

SeaSAR, May 2023

- Moving target recognition is an important application in SAR signal processing. 

- Video SAR moving target detection methods shall be further analysed and tested over real 

datasets for surveillance of slow speed moving targets on the ground.

• Optimization is needed to realize real-time refocusing of moving targets.

- Additional applications are under evaluation (e.g. shadow-based methods provide a new 

approach for ground moving target processing)
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Micro-Doppler signature

• Mechanical vibration or rotation of a target, or structures on the target, may induce additional 

frequency modulations on the returned radar signal which generate sidebands about the target’s 

Doppler frequency, called the micro-Doppler effect.

• Micro-Doppler signatures enable to determine some properties of the target.

Modelling and exploitation of radar micro-Doppler effects, to 

determine the dynamic properties of the target

Armenise, D., Biondi, F., Addabbo, P., Clemente, C. & Orlando, D., Marine targets recognition hrough micro-motion estimation from SAR data; 5 

Jul 2020, 2020, IEEE 7th International Workshop on Metrology for AeroSpace (MetroAeroSpace).
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Future – What Can be done in the Future

15SeaSAR, May 2023

• The extraction of m-D signatures from radar imaging systems for target 

classification  purposes is an emerging technique. Main technical issues in the extraction 

of micro-Doppler information from SAR images:

- impact of different sea states on the marine targets’ micro-motion extraction

- spatial resolution and signal to clutter ratio issues for the extraction of signatures from 

relatively close and small targets

- the vibration is inherently linked to time dependent aspects, for this reason the ideal 

conditions for the validation would be to have the ground truth measurement 

performed simultaneously to the SAR image acquisition

• Additional effort for m-D modelling and extraction

• Increasing interest from ISAR community moved the analysis of the m-D signatures to the 

most challenging problem of the compensation of the micro-motions in order to obtain good 

focused ISAR images
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Data fusion

Sensors/Systems:

• Coastal Radar

• Terrestrial AIS

• Satellite AIS

• Optical / IR cameras

• Vessels and airplanes (equipped with 

specific sensors)

• Synthetic Aperture Radar satellites

• Optical Satellites

• Satellite equipped with RF receivers

• Unmanned systems (UxS)

• High Altitude Pseudo-​Satellites (HAPS) – 

coming soon…

• Civilian and Military vessels databases
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Examples

17SeaSAR, May 2023



18

Satellite AIS

AIS messages contain

information about:

• IMO code

• MMSI code

• Vessel name

• Flag

• Speed

• Heading

• Declared destination

And allow:

• To generate tracks

• Anomaly detection

• Risk assessment

• Pattern of life extraction
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Spaceborne Maritime Radio Frequency Detection
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Future – What Can be done in the Future

20SeaSAR, May 2023

- Increased availability of RF datasets – this will allow to improve the correlation with EO based VDS

- The heterogeneity and volume of input data may have a direct impact on the data fusion complexity, requiring 

relevant computational resources and not ensuring a processing time compatible with Near-Real-Time 

applications

- Improve route prediction and reconstruction tools by estimating the ship position at a specific timestamp in 

the past (e.g. by interpolation) or in the future (e.g. by extrapolation or prediction), and for matching specific 

uses cases (e.g. for matching the tasking time of the EO satellites).

- One possible approach is to build a conditional probability distribution in the space of trajectories able to 

characterize the uncertainty about unobserved parts of the trajectory.

- supervised learning framework for trajectory predictions based on generative models (e.g. conditional 

variational autoencoder) to be trained using the available historical data, taking also into account the 
seasonality of the data and, when possible, high-level semantic information (e.g. type of vessel).

- statistical techniques based on Bayesian inference, taking into account suitable vessel motion models 

as well as suitable maritime traffic models.
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SeaSAR Applications / Submitted Abstracts

21SeaSAR, May 2023

List of submissions in this topic

- AI based route reconstruction on multifrequency multitemporal SAR images - Roberto Del Prete

- Deep Learning For Ship Classification on  Medium Resolution SAR imagery - Bou Laouz Moujahid

- Inverse SAR (ISAR) Processing for Maritime Situational Awareness (MSA) - Elena Morando

- Ship Navigation Assistance for Polar Waters by providing information on Sea Ice Drift And Deformation Zones 

Using TerraSAR-X Data

- A Feasibility Study Into The Use of High-Resolution Synthetic Aperture Radar (SAR) as a Novel Way of Identifying 

Aids To Navigation - Scott Kaczor

- Automatic Refugee Inflatable Vessel Detection with Polarimetric SAR - Peter Lanz
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Slick Applications 

Applications: 

1. Mineral oil slicks / spills identification and characterization

2. False positive discrimination

3. Shipwreck location from surface slicks
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Submitted Abstracts – Applications - Slicks

ID authors title

116Y. Yang, S. Singha, R. Goldman Integration of a Deep Learning Based Oil Spill Detection System 

into an Early Warning System for the Southeastern 

Mediterranean Sea

120D. Blondeau-Patissier, T. Schroeder, 

G. Suresh, Z. Li, F. Diakogiannis

Detection Of Marine Oil-like Features In Sentinel-1 SAR Images 

By Supplementary Use of Deep Learning and Empirical Methods

129M. Gade, D. King On the SAR Image Visibility of Heavy Fuel Leaking From the 

Wreck of a Sunken Vessel

132C. Jones, M. Johansson, B. Holt Automation of Slick Detection and Classification for Improved 

Monitoring with SAR

151B. Holt, C. Jones, F. Monaldo, O. 

Garcia

Try, Try Again: Recent Steps Toward An Operational SAR-based 

Algorithm for Oil Spill Thickness Measurements
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State of the Field  - Changes in last 10-15 years

Precipitating event: Deepwater Horizon Oil Spill (Gulf of Mexico, 2010)

1. Low noise airborne SARs – UAVSAR, FSAR, SETHI
• SAR was not limited to slick detection, but characterization is also 

possible
• X, C, S, L-band all show signatures of thicker / more emulsified oil 

within slicks given a sufficiently low noise floor instrument
• Quantitative evaluation of the impact of instrument noise on 

observations

2. Availability of quad-pol data from airborne SARs and RS2 
• Systematic studies of the capabilities of different polarizations, 

frequencies, and polarimetric or polarization-dependent parameters 
for quantifying oil properties (thickness, emulsification)
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State of the Field - Changes in last 10-15 years 

3.  SAR usage by operational monitoring agencies & services 
• Free data from Sentinel-1, available quickly 
• Improved coverage & repeat interval from combined satellite 

optical and SAR instruments

4. Increased computational capability
• Improved modeling

• Transport
• Scattering

• Machine learning  methods 
• Big data sets from Sentinel-1 for studies 
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1. Slick Characterization Potential (X-, C-, L-band) 

Deepwater Horizon OS – Oil Volumetric Fraction from L-band SAR 

28SeaSAR, May 2023

Airborne SAR = UAVSAR, L-band
Source: Minchew, Jones, Holt (2012)

Oil:Water Volumetric 

Fraction from L-band SAR

HH/VV
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2. Impact of Instrument Noise on Slick NRCS & Derived 

Parameters

1. Espeseth et al. (2020). The impact of system noise in polarimetric SAR imagery on oil spill observations. IEEE 

Transactions on Geoscience and Remote Sensing, 58(6), 4194-4214.

2. Alpers, Holt, & Zeng (2017). Oil spill detection by imaging radars: Challenges and pitfalls. Remote sensing of 

environment, 201, 133-147.

• Studies reporting volume & random 

scattering from oil slicks was not 

substantiated by low noise instruments.

• Surface scattering dominates.

• SNR >10 dB over additive noise (>0 dB for 
Add+Mult is required for slick 

characterization (also evaluated multiplicative 

noise).

From Espeseth et al., 2020

Additive noise

Additive  & 

multiplicative 

noise



30

3. Optimal Parameters for Slick Detection / 

Characterization

Sensitivity of Polarization-Dependent & Polarimetric Parameters

Early work with satellite SARs: Skrunes, S., Brekke, C., Eltoft, T., & Kudryavtsev, V. (2014). Comparing near-coincident C-and X-

band SAR acquisitions of marine oil spills. IEEE Transactions on Geoscience and Remote Sensing, 53(4), 1958-1975.

Airborne SAR = UAVSAR (L-band):  Espeseth, M. M., Skrunes, S., Jones, C. E., Brekke, C., Holt, B., & Doulgeris, A. P. (2017). 

Analysis of evolving oil spills in full-polarimetric and hybrid-polarity SAR. IEEE Transactions on Geoscience and Remote 

Sensing, 55(7), 4190-4210.

Satellite QP = RS2 (C-band) & UAVSAR (L-band): Garcia-Pineda, O., Staples, G., Jones, C. E., Hu, C., Holt, B., Kourafalou, V., 

... & Haces-Garcia, F. (2020). Classification of oil spill by thicknesses using multiple remote sensors. Remote sensing of

environment, 236, 111421.

Airborne SAR = SETHI (L-band):Angelliaume, S., Dubois-Fernandez, P., Jones, C. E., Holt, B., Minchew, B., Amri, E., 

Miegebielle, V. (2018). SAR imagery for detecting sea surface slicks: Performance assessment of  polarization-dependent parameters, 

IEEE Transactions on Geoscience and Remote Sensing, 56(8), 4237-4257, doi:10.1109/TGRS.2018.2803216.
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3. Optimal Parameters for Slick Detection / 

Characterization

From: Angelliaume et al. (2018). 
SETHI, L-band

Include impact of noise:

*

*

*

Best = VV

HV good, but 

sensitive to 

noise

Entropy more  

sensitive to noise



32

4. Oil Transport & Weathering Models

Model = OpenDrift / OpenOil3D: Röhrs, J., Dagestad, K. F., 

Asbjørnsen, H., Nordam, T., Skancke, J., Jones, C. E., & Brekke, 
C. (2018). The effect of vertical mixing on the horizontal drift of oil 
spills. Ocean Science, 14(6), 1581-1601.

An accurate description of vertical mixing and oil 
weathering is needed to represent the 
horizontal spreading of oil released on the ocean 
surface. 

Transport of oil between the surface slick and 
the water column crucially affects the horizontal 
transport of oil spills.

The vertical processes are control differences in 
the drift of various types of oil and in various 
weather conditions. 

Heavy bunker 

oil

Medium 

density oil

Light oil

Wind, wave
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Slick ID & Discrimination: Mineral Oil Spills vs. Look Alikes

Machine Learning, Big Data

SeaSAR 2023 abstracts:

1. Integration of a Deep Learning Based Oil Spill Detection System into an Early Warning System for the 

Southeastern Mediterranean Sea (Yi-Jie Yang et al.)

2. Detection Of Marine Oil-like Features In Sentinel-1 SAR Images By Supplementary Use of Deep Learning and 
Empirical Methods: Performance assessment for the Great Barrier Reef marine park (David Blondeau-Patissier)



34ESA UNCLASSIFIED - For ESA Official Use Only 34

Detection Of Marine Oil-like Features In Sentinel-1 SAR Images 

By Supplementary Use of Deep Learning and Empirical Methods: 
Performance assessment for the Great Barrier Reef marine park 

David Blondeau-Patissier
Thomas Schroeder, Gopika Suresh, Foivos Diakogiannis, Zhibin Li, Paul 

Irving, Christian Witte, and Andy Steven

04/May/2023



35

Research manuscript and dataset for this project

Both are Open Access
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Methodology: Deep learning + Empirical rules

Sentinel-1 SAR
Image processing

Use of convolutional 
neural networks 
(image based) 

Oil

Not oil

Dataset used for CNN training & testing
• More than 5,000 chips from the O&A curated database
• 400 x 400 pixel size chips
• Binary class
• Chip extraction & labelling:  manual, time consuming

Input
400 x 400 pixels

Rule-based 
approach 
( selected 

parameters)

1st opinion

2nd opinion

Decision

N>2,000

N>3,000

- Up to 5 scenes /day acquired over 

the marine park (IW_GRDH_)

- Acquisitions occur at 6am local time

- Processing using SNAP 

(GPT command line)



37
Oil

Very likely same trail (64km in length), rather 
than two separate trails, but disconnected

48km

16km

Ship #2
154.09 ˚-22.55˚

Subset, enhanced

Synthetic Aperture Radar scene, zoomed-in.

Example of application

Event of Sunday 19 February 2023, 
at 0512am (AEST), S-1A SAR.

Identified by algorithm
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Gaps & Future Development

1. Mineral oil releases vs. look-alikes
• ML methods
• Data sets for training/testing

2. Characterization of mineral oil properties (thickness, oil:water ratio, type)
• Need more field experiments for algorithm development & validation 
• In combination with multi-SAR sensor imaging (multi-frequency, satellite, airborne instruments)

3. Modeling
• Transport: Wave breaking, wave entrainment of oil 
• SAR NRCS vs. slick properties (how well can slicks be characterized from backscatter alone?)

• Multi-frequency studies

4. New fuel types (biogenic fuels)
• Prepare for spills 

• How do these fuels evolve in the ocean environment? 
• How do they manifest in SAR imagery?

Oil-in/on-Ice (Arctic spills)  - Ben Holt 
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Try, Try Again: Recent Steps Toward An Operational SAR-based 

Algorithm for Oil Spill Thickness Measurements

Ben Holt, Cathleen Jones, Frank Monaldo, Oscar 

Garcia

04/May/2023
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Overview

Develop a quantifiable SAR algorithm for determining the thicker components of oil spills/slicks for operational 

implementation based on in situ validation collections, including drone imagery. Utilized UAVSAR L-band and satellite 

C-band sensors.

•Field campaigns Gulf of Mexico, Santa Barbara and Norway

Tube Oil Sampler

Santa Barbara Field Program
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Validation – Drone-based Optical Survey

Water Mapper Drone - May 12 – Multispectral Sensor

Red – actionable, transitional/dark 

Blue – metallic sheen

Yellow- thin sheen

White – clean ocean 
Oscar Garcia-Water Mapping
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Relative Thickness Results

Algorithm Description: SeaSAR2023 Abstract  Automation of Slick Detection and Classification for Improved 

Monitoring with SAR, submitted by Jones, Johansson & Holt

WM CLASSES

OPTICAL
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Applications

•Gaps in abstracts/knowledge

Oil in Ice Detection

Iceberg detection

Macroalgae

Surfactants 

•Others – numerous

Water quality
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•USCG International Ice Patrol (IIP) is charged with tracking icebergs in North Atlantic Ocean that drift 

southward into shipping lanes below 48°N and provide daily messages to shipping to avoid accidental 

collisions within major shipping lanes.

•IIP utilizes aerial reconnaissance, ship sightings, ocean circulation, iceberg drift and deterioration models, 

and more recently extensive (RSat2, S-1, RCM, and S-2) satellite imagery to identify, track, and predict 

iceberg drift. This is done as a cooperative effort with Canada, Denmark, and US national ice services.

 Need for finer resolution imagery for ships to avoid icebergs ~ 10 m in size

 Reduced data latency

•For Southern Ocean iceberg monitoring, identification of location and calving event identification for 

Antarctic icebergs for USNIC would reduce the time and improve accuracy for current analysis.

Iceberg Detection and Tracking - Avoidance
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Oil in Ice

What if:

•Oil spill in marginal ice zone – how to separate low backscatter returns from oil slicks from new and young 

sea ice, related to ex. shipping accident?

Ref: Brekke, Holt, Jones, Skrunes (RSE 2014)

Ref: Johansson, Espeseth, Brekke, Holt (JSTARS 2020)

-Utilized airborne SAR imagery of L- and C-band polarimetric data for sea ice and oil slicks (Gulf of Mexico).

-Developed a simple model based on dielectric, surface and volume scattering, sea ice properties

->Multipolarization would be useful for separation at several frequencies

-> Low noise floor important

•Oil spill in/on/under sea ice – i.e. from a platform within older sea ice?

Ref: Wilkinson et al. Ambio 2017. Overview of response options

Ref: Various authors using penetrating radar, SAR including in situ/lab work

-Key issue is similarity in dielectric constant between thicker sea ice and oil (~3-5)

-At cold temperatures oil will change properties and become possibly separable from ice
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SAR Detection of Macroalgae

• Used Sentinel-1 and Sentinel-2 imagery obtained via Google Earth Engine.

•Machine learning applied to imagery

•Signatures for Sentinel-2 already developed

•Ref: Qi, L., Wang, M., Hu, C., & Holt, B. (2022), Remote Sensing of 

Environment (2022)

•Related studies by ex. Gade 1998, Shen and Perrie 2014
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•SAR has signatures brighter than the ocean due to leaves/stalks being pushed above sea surface

•Ulva had higher detection rates than Sargassum

•Combined sensors improves numbers of total observations

SAR Detection of Macroalgae
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‘A Massive Seaweed Bloom in the Atlantic’

https://earthobservatory.nasa.gov/images/151188/a-massive-seaweed-bloom-in-the-atlantic

•Significant problem

in last decade for 

Islands in Caribbean and 

Gulf of Mexico - beach 

fouling

•Reason for recent

explosion unknown

but thought to have

contribution from 

humans: ex. Fertilizer runoff

•Left - MODIS imagery from

U. So. Florida
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Surfactants – Biogenic Slicks

•Biogenic slicks composed of exudates of plant and animal life cycles 

•Global distribution, found to have impact on air-sea fluxes - energy, heat, gas exchange,

indicative of underlying near-surface circulation

•Low radar signatures similar to low winds, macroalgae, mineral oil – may need 

co-polarization.

•Ripe for machine learning to generate product using multiple sensors – feature

identification, association with biological production, surface presence during

lower wind states, 

-SAR 

-Wind speed retrieval – scatterometer

-Chlorophyll 

Papers by ex. Alpers, Gade, Wurl, Espedal, others
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51

ERS SAR Image (C-VV; 70 km × 70 km)
Bering Strait 

(24 June 1997, 22:30 UTC, © ESA)

Natural Marine Surface Films

[Gade et al., 2014]

Slicks & eddies

[Robinson, 2003]

Universität Hamburg
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52

Impact of Surfactants on Air-Sea Interactions

• Coupled air-wave-water dynamics control bulk air-sea fluxes

• SML composition / surfactants modify the waves

• Need for hi-res measurements within first millimeters above/below the 

waves in presence of surfactants

Surfactants

Universität Hamburg

•From Martin Gade
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