Polar+ Surface Mass Balance

Aims & Objectives

- 2-year feasibility study; 2020-2022.
- Aim: To demonstrate the feasibility of measuring Surface Mass Balance (SMB) from space.

Ambitions of EO4SMB

- > To lay the foundations for a new era of **operational monitoring of SMB** from space.
- > To demonstrate the feasibility of a **future SMB thematic product**.
- > To systematically evaluate and optimise processing algorithms for SMB product generation.
- > To explore the feasibility of several higher risk exploratory methods.
- > To develop a **future roadmap** setting out the path from feasibility study to operational product.

Background & Motivation

Ice Sheet Surface Mass Balance

- > The net mass exchange of all processes that operate at an ice sheet's upper surface.
- SMB encompasses total precipitation (snowfall and rainfall), sublimation (from the surface and from drifting snow), drifting snow erosion and melt water run-off.
- Responsible for >50% of Greenland's ice imbalance.

> The Polar regions are warming, ice melt is increasing.

- Extreme events are increasing in magnitude and frequency:
 - Record Greenland ice loss in 2019.
 - ➢ First rainfall at summit in 2021.

Projections of future cumulative sea level rise from Greenland SMB, under a range of forcing scenarios (Fettweis *et al.*, 2013).

The Impact of SMB

Resolving SMB is critical for a wide range of applications:

Perner et al., 2019

The Impact of SMB

Resolving SMB is critical for a wide range of applications:

The Impact of SMB

Resolving SMB is critical for a wide range of applications:

Field site

EO4SMB Concept

- Proof of concept focused on Greenland.
- Period 2010-2020.

EO4SMB Concept

Altimetry Concept

First Estimates of Ice Sheet wide run-off from Space

Slater et al., in press

Pushing Spatial & Temporal Resolution

> Optimising methodology to achieve local estimates of run-off.

Pushing Spatial & Temporal Resolution

Integrate EO velocity measurements into the processing chain.

Pushing Spatial & Temporal Resolution

- Optimising temporal sampling:
 - ➢ 60-day to monthly.
 - Sliding window.
 - Singular Spectrum Analysis to identify dominant frequencies and remove noise.

EO4SMB Concept

Joint Inversion Concept

- Gravimetry is coarse resolution, but can nonetheless provide an additional constraint on the regional SMB solution.
- Utilise GRACE + GRACE FO, altimetry, GPS-derived elastic uplift and ice discharge to invert for SMB.

Credit: R. Forsberg

EO4SMB Concept

Deep Learning

> Test whether near-surface melt information can be retrieved from low level radar altimetry data.

Deep Learning

> Test whether near-surface melt information can be retrieved from low level radar altimetry data.

Block 2

Conv 1D + relu

Conv 1D + relu

Flatten

- 1-d CNN trained on MODIS surface temperature data.
- Training and tuning performed on 9 years of CryoSat-2 LRM data.
- Testing based on remaining 1 year of CryoSat-2 LRM data.

Deep Learning

- > Test whether near-surface melt information can be retrieved from low level radar altimetry data.
 - 1-d CNN trained on MODIS surface temperature data.
 - Training and tuning performed on 9 years of CryoSat-2 LRM data.
 - Testing based on remaining 1 year of CryoSat-2 LRM data.
 - Preliminary analysis is encouraging suggests ~ 70% of unseen waveforms correctly classified.

Feasibility study – outlook and future potential is key.

ICE SHEET VELOCITY MAP FROM SENT

Broader Perspective

- Synergy of multiple ESA projects.
- Broader links to oceanography, global climate & impacts.

Broader Perspective

Credit: Masashi Niwano https://www.youtube.com/watch?v=t2ALaJ28feU