Clint Conrad Björn Heyn Carmen Gaina Wouter v. d. Wal Bart Root Valentina Barletta **Rene Forsberg** Björn Heincke Agnes Wansing Jörg Ebbing Mareen Lösing Dilixiati Yixiati Chiara Civiero Sergei Lebedev Fausto Ferraccioli **Roger Haagmans**

Geological Survey of

GEUS

Denmark and Greenland

Start nov 2020

DTU Space

National Space Institute

Gravity Magnetic anomaly Seismology Heatflow Mantle plume

British

Antarctic Survey

JURAL ENVIRONMENT RESEARCH COUNCIL

Glacial isostatic adjustment

TUDelft

Dublin Institute for Advanced Studies

Christian-Albrechts-Universität zu Kiel

Compilation – 3D Greenland update

- More data, GOCE R6, satellite altimetry (DTU 17)
- Improved ArcGP (Arctic gravity grid for EGM2020)
- New DEMs, new ice thickness grids (Bamber) => new improved Bouguer anomaly grid

Vzz Gradient (Eotvos)

by FFT transformation of Free-air grid

DTU Space National Space Institute

New magnetic anomaly

For each equivalent source q_j, an "apparent" susceptibility value is assigned by means of inversion :

GEUS

Application using constraints from Martos et al. 2018

0.040 0.037

0.035

0.030 0.028 0.025 0.022

0.020

0.018

0.015

0.013 [SI]

100

(meters) WGS 81 / UTM zone 24N

inversion

Geological Survey of Denmark and Greenland

GEUS

NAT2021: new tomographic model of the North Atlantic

Earth and Planetary Science Letters 569 (2021) 117048

The tilted Iceland Plume and its effect on the North Atlantic evolution and magmatism

Nicolas Luca Celli^{a,*}, Sergei Lebedev^a, Andrew J. Schaeffer^b, Carmen Gaina^{c,d}

^a Dublin Institute for Advanced Studies, Dublin, Ireland

^b Geological Survey of Canada, Pacific Division, Sidney Subdivision, Natural Resources Canada

^c Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, Norway

^d School of Earth and Atmospheric Sciences, Queensland University of Technology, Australia

1.2 million global • and regional seismograms from over 27000 events and 6000 stations

හි

60

55

50

45

රි

60

્દર્ડ

50

45°

The densest sampling of the region with seismic data

> DIAS Institiúid Ard-Léinn | Dublin Institute for Bhaile Átha Cliath Advanced Studies

hit counts (10^3) [min/max= 3679/213872]

- The model spans from the upper crust to the bottom of the mantle transition zone (660 km).
- Crustal structure was inverted for (more accurate than assumptions or crustal corrections).
- S-wave velocity, P-wave velocity, azimuthal anisotropy.

- Receiver functions indicate thin transition zone (410-660 km) and, thus, high temperatures beneath eastern Greenland at 410-660 km depth.
- Important independent confirmation of the large hightemperature anomaly beneath eastern Greenland.
- Beneath Iceland, the transition zone shows small scale hot can cold anomalies, possibly due to the small scale convection including lithospheric cooling and dripping.

Geothermal heat flow – a new database & map for Greenland

GHF from machine learning

areas considered as frozen at the ice-bed interface are blanked out

Greenland Geothermal Heat Flow
Database and Map - Colgan et al. in
review :

https://essd.copernicus.org/preprints/essd -2021-290/

- covers in total 419 sites, 129 which have not been reported by IHFC previously <u>https://doi.org/10.22008/FK2/F9P03L</u>
- ^{0.010} applied a machine learning algorithm to the data (following the method in Lösing and Ebbing 2021 for Antarctica)
 - ⁶ calculated mass loss from basal melt due to geothermal heat flow (following method from Karlsson et al. 2021)

02		Mean onshore GHF	Mass loss per year
	This study	44 [mW/m²]	3.8 [Gt]
	Artemieva (2019)	58 [mW/m²]	5.1 [Gt]
	Martos et al. (2018)	60 [mW/m²]	5.6 [Gt]
	Greve (2019)	62 [mW/m²]	5.7 [Gt]

Lithospheric model – Archean composition II

res. elevation > 0: to much masses res. BA > 0 : mass deficit

Vs residual is low

0

- residual GHF is towards the one from the similarity analysis with NAT2020 \rightarrow also low enough \rightarrow both methods are consisted
- high residuals for BA and isostatic elevation

Christian-Albrechts-Universität zu Kiel

3-D moving plate – Reference case

- Isotherms:
 - 1300 K
 - 1500 K
 - 1650 K
- Downstream:
 - plume track
 - drips next to plume track

Anomaly values for Greenland

Northern part:

- Heat flux anomaly ~10 mW/m²
- Lithosphere thinning ~40 km

Southern part:

- Heat flux anomaly ~20 mW/m²
- Lithosphere thinning ~90 km

Celli et al.

(2021)

3 Possible combinations of parameters

80-90 km LT with SUM low viscosity

100 km LT SUM & DUM low viscosity

80-90-100 LT DUM low visco (0.1-1x10¹⁹ Pa s) SUM around 4x10¹⁹ Pa s

Postglacial rebound

NAT2020 (Celli et al. 2020)

550 km

18

Stress-dependent viscosity

WINTERC-G 7 mm 300 ppm **200 km depth**

ŝ

log10(visc (Pa

Conclusions

- New data compilations: gravity, magnetic anomalies, seismic, heatflow
- New interpretations: sub-ice geology, lithosphere structure, mantle plume, postglacial rebound
- ightarrow interaction with ice sheet

GEUS

″UDelft

Christian-Albrechts-Universität zu Kiel

DTU Space National Space Institute

Publications

Accepted/published

- Celli, N.L., S. Lebedev, A.J. Schaeffer, C. Gaina, 2021. The tilted Iceland Plume and its effect on the North Atlantic evolution and magmatism. EPSL, 569, doi.org/10.1016/j.epsl.2021.117048.
- Martinec, Z., Fullea, J., Velimsky, J., Sachl, L. A new integrated geophysical-petrological threedimensional model of upper mantle conductivity validated by the Swarm M_2 tidal magnetic field. Geophysical Journal International, Volume 226, Issue 2, August 2021, Pages 742–763, https://doi.org/10.1093/gji/ggab130.

<u>In review</u>

- Dilixiati, Y., Baykiev, E., Ebbing, J. Spectral consistency of satellite and airborne data: Application of an Equivalent dipole layer for combining satellite and aeromagnetic data sets. Geophysics, revised.
- Kolyukhin D., Minakov, A., "Statistical modeling of Earth's mantle heterogeneity" (International Journal of Geomathematics)
- Minakov, A., Gaina, C. "Probabilistic linear inversion of satellite gravity gradient data applied to the northeast Atlantic" (JGR Solid Earth)
- Moorkamp, M., Fullea, J. Aster, R.C., Weise, B., Inverse Methods, Resolution and Implications for the Interpretation of Lithospheric Structure in Geophysical Inversions, submitted to PEPI.
- Sebera, J., Bezdek, A., Ebbing, J., Satellite magnetic anomalies with a smooth spectral transition to long wavelengths. Physics of the Earth and Planetary Interiors.