CryoSat+ Antarctic Ocean

CryoSat-2 for enhanced sea-ice thickness and ocean observations in Antarctica

Jean-Alexis Daguze CLS Michel Tsamados UCL-ES Steve Baker UCL-MSSL and the CS+AO Consortium

- Investigate novel methods to improve SI freeboard, SIT, ocean topography & currents in Antarctic ocean, using CS SAR, SARin and other satellites
- 2. Design a new algorithm for retrieving improved SI freeboard + thickness in Antarctica, that could be implemented in CS-PDS
- 3. Novel methods to get SSH and currents in polynyas and leads from CS2, to analyse variability of the ocean dynamics. Assess impacts of ocean dynamics on transport of floating sea-ice.
- 4. Deliver experimental dataset covering points 2/3 for the full Antarctic region and full mission lifetime.
- 5. Perform scientific assessment of the main changes and dynamics of sea-ice and ocean mesoscale and large scale circulation in Antarctica demonstrating the scientific value of the new products.

- Develop, inter-compare and validate multiple approaches to sea surface height and sea ice thickness retrieval on Antarctic sea ice. Approaches to be considered are:
 - Novel LRM/SAR/SARIN methods for leads, polynyas, open ocean and sea ice classification
 - Along-track processors over leads, polynyas and open ocean for sea surface estimation
 - Along-track processors over sea ice floes for sea ice thickness estimation
 - Pan-Antarctic gridded products of dynamic ocean topography and geostrophic currents (along with secondary products: EKE, upwelling, etc...)
 - Pan-Antarctic gridded products of sea ice thickness
 - Preliminary inter-comparison of along-track and gridded products developed in steps b-e
 - Validation over selected tracks and key regions against in-situ and airborne data.

Candidate test areas

40° South Atlantic 0 cean Depth (km)	Regions	Science questions	Data availability / CS2 challenges
50° southwort lindran Ridge	Sea ice – Ocean edge	Up- or Down-welling Jet formation AAIW formation	LRM/SAR boundady AVISO overlap
Patagorian Biser Largen Sea Sharran Sharran Sea	Weddell Sea	MYI formation AABW formation Weddell Gyre Continental shelves	Thicker sea ice / snow Snow buoy data Flooding Snow-ice formation
Drake Pasage Pot FRice	<u>Mallin hanna</u> Sea		
allingshause shells	Amundsen Sea	Thinning ice shelves Continental shelves Amundsen Sea Low	Tide gauges available Moorings available CS2 SSH validation
Ross Shelf Shelf Sea D'Unville Sea	Ross Sea	Spin up / down of gyre AABW formation Continental shelves Polynyas Coastal currents	Tide gauges available Gliders deployed Geoid bias FYI AMSRE / SMOS
Out of the pacific Antractic days	Indian/Pacific sector	ACC proximity Coastal current	Data paucity AVISO overlap Geoid bias
C C A A C I I I C 50° Campbell Plateau 0 2000 4000 km	Weddell polynya	Unknown formation Upwelling location	Regular cruises SAR mode polynya

Polar Science Cluster Meeting

Tryosat+

Tryosat+

CryoSat+ Antarctic Ocean Radar Processing Chain

CryoSat+ Antarctic Ocean WP3: along-track

🚩 cryosat+ Antarctic Ocean

CryoSat+ Antarctic Ocean WP3: along-track

ryosat+ Antarctic Ocean

eryosat+
Intarctic Ocear

Group	Method	Operational	Reference
CLS	Neural Network (SAR and SARin L1b)	Prototype: Yes Pan-Arctic: Yes Pan-Antarctic: Yes	Thibaut et al (2010) Poisson et al (2018) Longepe et al, in prep
LEGOS	Peakiness (L1b)/RIP(L1a)	Prototype:Yes/Yes Pan-Arctic: Yes/No Pan-Antarctic: No/No	Guerreiro et al (2017) Fleury et al (2017)
MSSL	Echo shape (skewness, etc) (L1b)	Prototype: Yes Pan-Arctic: Yes Pan-Antarctic: No	Laxon et. al. (1987)
isardSAT	Fully Focused SAR (L1a)/ Off-nadir SARIN (L1b)	Prototype: Yes/Yes Pan-Arctic: No/No Pan-Antarctic: No/No	Rey et al. (2015) <u>Passaro</u> et al. (2017)
DTU	Peakiness + backscatter (L1b)	Prototype: Yes Pan-Arctic: Yes Pan-Antarctic: No	Jain et al., (2015)

0 55H (m)

Polar Science Cluster Meeting

cryosat+ Antarctic Ocean

12

cycle 122, Pass 374

cycle 122, Pass 374

Tryosat+

cryosat+ Antarctic Ocean

Tryosat+

ryosat+ Antarctic Ocean

Next:

- Looking for CS-2 « ground truth »
- Comparison with FFSAR (IsardSat)

- Lead detection approach
 - CS2 presents replica patterns with grating lobes spaced +/-92m
 - Caused by closed-burst operation
 - If along-track lead size is < than replica spacing, replicas may be disentangled from main signal.

Credit: IsardSat

Antarctic Ocean

- Modeled sinc signal approach:
- Using correlation with a modeled sinc function help us to <u>detect the position of the leads</u>.
- We have to determine a proper bandwidth threshold for leads narrower than 92 meters.
- We may be able to estimate leads wider than 92 meters with a resolution of 92 meters.
- On going development

CryoSat+ Antarctic Ocean WP3: along-track

Polar Science Cluster Meeting

ryosat+ Antarctic Ocean

CryoSat+ Antarctic Ocean WP3: along-track

Group	Retracker	Operational	Reference
CLS	Physical on LRM, SAR or	Prototype: Yes	Poisson et al (2018) in LRM
	SARin multilooked echoes	Pan-Arctic: Yes	Thibaut et al (2017) in SAR/SARin
		Pan-Antarctic: Yes	
DTU	Threshold	Prototype: Yes	Skourup et al. (2017)
		Pan-Arctic: Yes	
		Pan-Antarctic: Yes	
СРОМ	Threshold/Physical	Prototype: Yes/Yes	Tilling et al. (2017) / Wingham et al.
		Pan-Arctic: Yes/No	(2018)
		Pan-Antarctic: Yes/No	Armitage et al. (2016)
LEGOS	Threshold/Physical	Prototype: Yes	Guerreiro et al. (2017)
		Pan-Arctic: Yes	Fleury et al. (2017)
		Pan-Antarctic:Yes	
MSSL	Threshold/Model	Prototype: Yes	Tilling et. al. (2017)
		Pan-Arctic: Yes	Giles et. al. (2007)
		Pan-Antarctic: No	
isardSAT	Physical	Prototype: Yes	Ray et al., (2015)
		Pan-Arctic: Yes	
		Pan-Antarctic: No	

Ingestion, alignment and ROI filtering

 Filtering performed by lat/lon box to get a region of interest

- 1.00

0.75

0.50

0.25

- 0.00 E

-0.25

-0.50

-0.75

-1.00

- 18

16

12 ෆු

10

- 2

 Remaining measurement count on a 10km grid shows variation in density

- Level of variation similar between ESA, MSSL, LEGOS
- CLS variation is smaller, but parameter is set to 'not-a-number' more frequently
 - Is filtering out anomalous waveforms
- Outlier SHA values can be caused by anomalous waveforms or land in the footprint
- Other data has no QA filter to allow maximum # records for comparison

esa

- Results similar
- isardSAT has lowest standard deviation
- True SHA distribution not known
- LEGOS spread more symmetrical
- isardSAT possibly best?

	ESA	MSSL	LG-SAM	CLS	iSAT
mean	0.019	-0.030	-0.023	-0.148	-0.028
std	0.232	0.240	0.235	0.251	0.224
min	-1.998	-2.066	-2.181	-4.747	-4.671
25%	-0.062	-0.107	-0.141	-0.225	-0.115
50%	0.044	-0.001	-0.001	-0.109	-0.006
75%	0.136	0.089	0.114	-0.015	0.089
max	3.092	3.020	2.041	1.774	1.858

cryosat+ Intarctic Ocean

Summary

- ESA MSSL results almost identical (as expected)
- CLS result similar to ESA.
 - Needs a bias correction or matched MSS
- LEGOS SAMOSA most different comparing record to record but produces almost identical histogram
 - Retracks more data than CLS
 - Low correlation with current ESA data
- Conclusions
 - LEGOS SAMOSA has good coverage and histogram shape
 - If CLS coverage is sufficient to produce good gridded freeboard coverage, worth exploring further
 - If isardSAT lower SD due to avoiding noise, best result as it also has good coverage

Credit: MSSL

Underflight comparisons

- Only way to get a direct comparison of retracker results against reality is to use underflight ground truth (or very recent Cryo2Ice data)
 - Very limited data in Antarctica
- Also need to remove snow data to compare ALS freeboard with radar freeboard
 - 2010 track not covered by snow data
- Recently obtained data from 2017-2018
 - Snow data available
 - All groups running retracking for these additional tracks
 - Currently looking at data from ESA and isardSAT
- Also looking at comparisons with collocated L1b OIB data

First partial along track results

Track ALS_CRYOVEX_DTU_20171230.frb

- ALS data resampled to Cryosat doppler footprints (mean value within footprint)
 - Reduce noise and represent the surface as Cryosat detects it
- Snow depth needs to be removed from ALS heights (will lower height)
- Snow delay needs to be applied to CS2 heights (will increase height)
- In the process of checking common use of MSS models and geo corrections

CryoSat+ Antarctic Ocean WP3: along-track

ryosat+ Antarctic Ocean

Open ocean surface elevation from CryoSat2

- Radar echoes from the ocean surface have been analysed by:
 - DTU (3 methods), MSSL, CLS, IsardSat, LEGOS (3 GPOD methods)
- In SAR mode ocean surface is considered in both leads and open ocean
- The leads are classified in the existing ESA L2 data (Baseline D)
- CLS provides an alternative classification method

- The CLS and IsardSat physical retrackers are compared
- They have similar lead elevations to L2
- The ocean elevations are lower with less spread for this track

- The DTU retrackers are compared, th70, imp_th70, and gaussian
- All supplied DTU data has less coverage than L2
- In leads the gaussian is closest to L2
- In the open ocean DTU retrackers have a large spread, th70 closest to existing L2

ryosat+ Antarctic Ocean

Along track analysis including corrections

- GPOS SSHA anomalies are all very noisy for leads
- The samosa retracker performs well for open ocean

Whole month analysis

L2_leads

Data L2_range DTU_range_ DTU_range_ DTU_range_ CLS_range ISat_2step MSSL_Srange th70 imp_th70 gauss

Mean	-2.306	-2.151	-2.120	-2.306	-2.168	-2.310	-2.314
Std	0.497	0.524	0.524	0.578	0.497	0.499	0.500
Bias	0.000	0.174	0.204	0.018	0.086	-0.004	-0.009

Polar Science Cluster Meeting

Summary

- DTU gauss performs well in leads
- DTU th70 performs well in the open ocean
- CLS and IsardSat retrackers perform similarly, with IsardSat with the lower spread
- MSSL-Specular is similar to current L2
- CLS lead classification greatly reduces the amount of data
 - But potentially may remove many erroneous sea ice floe elevations
- Further analysis will be performed

Merged along-track product

Input for gridded product (WP4)

CryoSat+ Antarctic Ocean WP3: along-track

ryosat+ Antarctic Ocean

- 3 criteria to evaluate the impact of a geophysical correction:
- 1. it should reduce the standard deviation of the SLA
- 2. it should aim the mean SLA close to zero
- 3. it should improve the continuity of the SLA among the ice relatively to the best SLA solutions over open ocean

Cryosat+ Antarctic Ocean

• Referenced SLA : SLA computed by LEGOS using SAMOSA+ ranges:

ssa_median_20hz - sea_state_bias_20hz

- We change one by one the evaluated correction, starting by the correction type that have the bigger impact.
- We compute the mean and the std of the SLA

The smaller is the STD(SLA) the better is the correction

- For each correction type, we keep the solution with the lower std before considering the next correction type.
- Three correction types considered: MSS, Ocean Tide, DAC:

SLA (m)	mean	std	order
No MSS corr	-7.2636	29.1299	1st
No_TIDE corr	0.020	0.232	2nd
No_DAC corr	0.235	0.163	3rd

• Referenced SLA : SLA computed by LEGOS using SAMOSA+ ranges:

ssa_median_20hz - sea_state_bias_20hz

- We change one by one the evaluated correction, starting by the correction type that have the bigger impact.
- We compute the mean and the std of the SLA

The smaller is the STD(SLA) the better is the correction

- For each correction type, we keep the solution with the lower std before considering the next correction type.
- Three correction types considered: MSS, Ocean Tide, DAC:

SLA (m)	mean	std	order
No MSS corr	-7.2636	29.1299	1st
No_TIDE corr	0.020	0.232	2nd
No_DAC corr	0.235	0.163	3rd

SLA for Cycle 121 20190721-20190819

-0.25 main_main_2010225ea_state_bias_20102+hr(Zmss_dtu_15)+hr(Zmss_dtu_10)n1 25m

SLA MSS_DTU15 (cm)	
std	
11.7	
	0TU15 (cm) std 11.7

SLA MSS_DTU18 (cm)	
mean	std
-1.9	11.7

-0.25m median_2012-2:sea_state_bias_2012+hr(2:mss_dtu_15)-2:mss_cnescts15_0; (m25m)

SLA MSS_CLS15 (cm)		
mean	std	
-2.5	21.0	

MSS_ESAD

cryosat+ Antarctic Ocean

-0 s25mhzzsea_state_bias_20tz+hrtzmss_dtu_15)-brtz_esa0:mean_sea_surf_s00_025m

SLA MSS_ESAD (cm)		
mean std		
-0.07	22.1	

SLA for Cycle 121 20190721-20190819

Low impact of the Ocean Tide Solution

cryosat+ Intarctic Ocean

SLA for Cycle 121 20190721-20190819

SLA (cm) DAC GPOD						
mean	std					
-3.3	11.7					

SLA (cm) DAC GDR_D			
mean	std		
-3.3	12.0		

SLA (cm) DAC LEGOS				
mean	std			
-3.3	11.9			

Low impact of the IB/DAC Solution

47

		cycle 119		cycle 121		cycle 124		2015-2019	
	SLA (m)	20190524-20190622		20190721-20190819		20191016-20191114		gridded	
		mean	std	mean	std	mean	std	mean	std
SSM	NO_MSS	-7.2636	29.1299						
	DTU15	-0.032	0.103	-0.033	0.117	-0.001	0.112	-0.010	0.029
	DTU18	-0.016	0.107	-0.019	0.117	0.017	0.114		
	CLS15	-0.023	0.143	-0.025	0.210	0.008	0.150	0.000	0.189
	GDR_D	-0.005	0.159	-0.007	0.221	0.027	0.165		
IDE	NO_TIDE	0.020	0.232						
	FES14	-0.032	0.103	-0.033	0.117	-0.001	0.112		
	TPX09	-0.028	0.103	-0.033	0.117	-0.006	0.114		
-	OT_GDR_D	-0.033	0.103	-0.033	0.116	-0.005	0.114		
	OT_LEGOS	-0.032	0.104	-0.033	0.117	-0.007	0.114		
DAC	NO_DAC	0.235	0.163						
	IB_GPOD	-0.032	0.103	-0.033	0.117	-0.001	0.112		
	IB_GDR_D	-0.032	0.104	-0.033	0.120	-0.001	0.116		
	IB_LEGOS	-0.033	0.104	-0.033	0.119				

Green: the lower std

If the MSS is not improved, the other corrections are negligible (cannot go bellow 10.3 cm STD)

Conclusion

- 3 correction types considered: MSS, ocean tide, DAC
- MSS: 4 models, Tide: 4 models, DAC: 3 models
- The MSS has the larger impact
- MSS_DTU15 seems to be for now the best solution, but still margins of improvement for a better continuity between open ocean and sea ice
- <u>For now Ocean Tides and DAC have small impacts but they can</u> get very sensitive with the improvement of MSS and retracker

- 1. Critical analysis of work done, c.f. project objectives
- 2. Identify additional work and development towards achieving better sea ice thickness /sea surface height /geostrophic current information in the Southern Ocean. Identify observational/operational gaps, that could be addressed by novel future data development/campaigns/missions.
- 3. Potential for integrating data into current observational and modelling work/understanding
- 4. Define a scientific agenda for the project 2019-2023. Coordinate with other relevant projects/initiatives (EC/national) that may be relevant for the project development.
- 5. Define a plan for transition between scientific and operation activities.

Tryosat+

CryoSat+ Antarctic Ocean

CryoSat+ Antarctic Ocean Towards gridded products

Credit: UCL

Credit:

Leeds

Credit: LEGOS

Polar Science Cluster Meeting

ryosat+ Tntarctic Ocean

 (γ)

