
Hyperspectral Remote Sensing for Agriculture (and water)
- Theoretical Lecture

PD Dr. Tobias B. Hank

Dept. of Geography | Faculty of Geosciences
LUDWIG-MAXIMILIANS-UNIVERSITÄT Munich (Germany)

Session: Day 5 – Hyperspectral Data for Agriculture and Water
Place: Institute of Advanced Studies Kőszeg (iASK), Hungary

Time: Friday | November 25th | 08:30-10:00 UTC+1

11th Advanced ESA Training 
Course on Land Remote Sensing



Politics & Governance

Food
Security

Civil 
Security

Climate 
Change

Socio-
cultural

Socio-
cultural

Food-
Industry

Farm-
Economy

Producers

Geography

Energy

Waste

Water

S U P P L Y - Agriculture Food – D E M A N D

Values
Education
Preferences

Food

Land Surface

Demography

Science

Technology

Economy

Money

Consumers

Farm-
system

Politics & Governance

Food
Security

Civil 
Security

Climate 
Change

Socio-
cultural

Socio-
cultural

Food-
Industry

Farm-
Economy

Producers

Geography

Energy

Waste

Water

Values
Education
Preferences

Food

Land Surface

Demography

Science

Technology

Economy

Money

Consumers

Farm-
system

1



Challenges of food production & sustainability

One strategy to meet this increasing food demand has been 
converting more land into arable land…

Figure reprinted from Roser et. al. 
(2013)

Figure reprinted from SEOS

“Humankind is facing an unprecedented challenge to produce enough food for the coming decades due to population growth and 
increase in the average demand per capita, changes in climate conditions, and limitations in arable land area, as well as pressure on the 
water and resources.“ (Ninomiya et al., 2019)
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Challenges of food production & sustainability
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Approximately 1/3 of the continental area is used for agriculture (arable land, permanent crops,
pasture land). In some industrialized countries, 100% of the potential arable land is already used.
Further expansion of arable land is not possible or only possible with great ecological challenges
(e.g. clearing). Therefore, an increase in efficiency in food production must be achieved through
improved management in order to secure food for a growing world population.

How can this be done sustainably?

Worldwide, only about 11.2 billion ha are available to humans as usable biologically productive land
(arable land and pasture, forests, fishing grounds and built-up areas). Of this, 2.3 billion ha are
designated as fishing grounds (productive marine and freshwater areas) and 8.8 billion ha are
designated as land areas. Land areas are composed of 1.5 billion ha of cropland, 3.5 billion ha of
pasture, 3.6 billion ha of forests, and about 0.2 billion ha of built-up area, which is included in the
calculations as sealed potential cropland.

Challenges of food production & sustainability
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Figure adapted from: 
Zwart & Bastiaansen (2004)
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The higher the yield level, the 
more efficient production 

becomes!
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All with central contributions from 
satellite technology!

Results from the project „EO4Food: 
Earth Observation Needs and 
Opportunities to Support Sustainable 
Agriculture and Development”, funded by ESA



Manual Steering vs. Auto-Steering

Precision or Smart Farming
Auto Steering
By minimizing the overlap of the lanes, higher efficiency is achieved!
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Auto-Steering-Applications are made possible due
to navigation techniques (e.g. dGPS/RTK, Galileo,
GLONASS, BeiDou).

Navigation is a satellite thing, but there is more…



Examples for site-specific management (with the help of earth observation):

▪ Distribution of seeds according to yield potential.

▪ Distribution of fertilizer applications according to current growth activity.

▪ Distribution of plant protection agents according to current biomass 
distribution.

▪ Targeted positioning of soil samples:

Detection of long-term persistent growth patterns

5 samples, 5 soil types

6 samples, 4 soil types

Precision or Smart Farming
Site Specific Measures
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Image credit: VISTA GmbH



Remote Sensing: 
Spatial Dynamics
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Spatially and temporally dynamic 
information products

Process Modelling: 
Temporal Dynamics
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Videos/java/strahler/strahler.htm
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+ Stomatal conductance (drought stress, CO2-scenarios…) 
+ Phenological model (varieties, yield formation…)
+ Carbon allocation (canopy structure, radiative transfer…)
+ Management (sowing, fertilizing, mowing, harvesting…)
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Hank, T. (2008): A Biophysically Based Coupled Model Approach for the Assessment of Canopy
Processes Under Climate Change Conditions.
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Leaf Area Index

= Maize

= standard

= rainfed

= 30 arcsec 
~1km

= 1 h
Results from the 
project „ViWA –
Virtual Water Values“, 
funded by BMBF
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= Maize

= standard

= rainfed

= 1 h

Leaf Area Index

= 30 arcsec 
~1km

Results from the 
project „ViWA –
Virtual Water Values“, 
funded by BMBF
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Field Campaigns (Test sites MNI & Irlbach)

In-situ data collection of:

▪ Leaf chlorophyll content (Cab)

▪ Leaf area index (LAI)

▪ Biomass samples (organ-specific) 
▪ Leaf water content (EWT),

▪ Leaf mass per area (LMA), 

▪ Nitrogen (N) & Carbon (C) content

▪ Spectral data (ASD)
Winter wheat (Kometus)

Barley (Sandra)
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The EnMAP Mission and its Scientific Preparation Program
The Mission
▪420 - 2450 nm
▪30 m spatial resolution  
▪30 km swath width 
▪30° off-nadir pointing
▪Launch: April 1st 2022

Science Projects
▪Forests & Ecosystems
▪Geology & Soils
▪Coastal & Inland Waters
▪Ecosystem Transitions
▪Agriculture & Vegetation

Edu-Program
▪HyperEDU Sld Collections
▪HyperEDU Workshops
▪HyperEDU Tutorials
▪HyperEDU MOOCs
▪EO College

16



HyperEDU
Workshops & Summer Schools (SensEco, EnMAP-Box, EARSeL etc.)
EO College (Tutorials, Units, Slide Collections, Video Production)

17

https://eo-college.org/courses/beyond-the-visible/
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And what about the soils beneath the vegetation canopy?

19

Figure modified after: Chabrillat, S., Ben-Dor, E., Cierniewski, J. et al. Imaging Spectroscopy 
for Soil Mapping and Monitoring. Surv Geophys 40, 361–399 (2019)

Soil moisture/grain size?

Organic matter

Clay minerals

Hygroscopic 
water

Iron oxides

350nm 2400nm

Carbonates



Hyperspectral 
Data Cube
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Classification of Biophysical and Biochemical variables

Directly drive radiative transfer:

Primary variables
Indirectly drive radiative transfer:

Secondary variables

Canopy level traits
▪ LAI (green LAI, brown LAI)
▪ Leaf inclination
▪ Green cover fraction
▪ fAPAR
▪ Albedo

Leaf level traits

▪ Pigment content 
(chlorophyll, carotenoid, & 
anthocyanin contents) 

▪ Leaf mesophyll structure
▪ Leaf water

The concept of hyperspectral measurements can be traced to laboratory procedures (quantification is the main 
goal!). When quantifying our environment with the help of Hyperspectral data, we distinguish between variables that 
are directly involved in radiative transfer mechanisms and those which are secondarily involved:

▪ Evapotranspiration
▪ Nitrogen content
▪ Phenology
▪ Crop yield
▪ Water stress
▪ Irrigation needs
▪ Crop coefficient

Vegetation traits 
& radiative transfer

21



▪ Leaf level traits describe the biochemical and morphological properties of leaves, including pigments 
(chlorophyll a + b, carotenoids, anthocyanins), nitrogen, phosphorus, leaf mass per area, leaf water 
content, carbon and nonstructural carbohydrates (sugars, starches). 

▪ These traits are mainly involved in photosynthetic processes and carbon uptake.

▪ Leaf structural compounds include cellulose, fiber, lignin and hemicellulose.

▪ Further traits are defensive compounds (phenols, condensed tannins), macronutrients with multiple 
functions (e.g. , Ca, B, Fe, K, Mg, S) and metabolic traits (see Table 12 in Cawse-Nicholson et al. 2021).

▪ Typically, leaf traits are given in area-based (µg cm-2) or mass-based units (% or mg g-1).

22

Biophysical and Biochemical Variables
Leaf Level Traits

22



▪ “In agricultural systems, the accurate spatial mapping of leaf chlorophyll 
content is important for monitoring vegetation health and plant stress, 
which can be used to guide fertilizer application in order to optimise crop 
yield and reduce excessive nutrient loss.” (Croft and Chen 2017)

▪ Chlorophyll molecules allow the conversion of absorbed solar irradiance 
into stored chemical energy, through harvesting light energy and 
supplying electrons to the electron transport chain, leading to the 
production of NADPH for the reactions of the Calvin–Benson Cycle.

▪ The amount of solar radiation absorbed by a leaf is largely a function of 
foliar concentration of photosynthetic pigments. Hence, low leaf 
chlorophyll content (LCC) limits the photosynthetic capacity and reduces 
primary productivity of the crops (plants). 

▪ LCC is usually quantified in units of μg chlorophyll per cm2 (leaf area), or 
μmol m−2 or μg g-1 .

▪ In situ measurements of LCC are usually performed non-destructively via 
handheld devices, e.g. the Konica Minolta SPAD-502Plus:

Biophysical and Biochemical Variables
Leaf chlorophyll content (LCC)

23

LCC [µg cm-2]

0.0 70.0

Image credit: Courtesy of Martin Danner



▪ “Carotenoid pigments provide fruits and flowers with distinctive red, orange and 
yellow colours as well as a number of aromas, which make them commercially 
important in agriculture, food, health and the cosmetic industries.” (Cuttriss et al. 
2011)

▪ Plants contain a number of different types of carotenoids (Cxc), which fall into the 
subgroups: carotenes or xanthophylls. The most common carotenoid pigments 
present in leaves are represented by one carotene pigment (b-carotene) and five 
xanthophylls (lutein, zeaxanthin, violaxanthin, antheraxanthin, and neoxanthin) 
(Croft & Chen 2017).

▪ Carotenoids and xanthophylls play an important role in photoprotection, accessory 
light harvesting and energy transfer (Gitelson et al. 2002; Kong et al. 2017). 

▪ Carotenoids are present in variable proportions during the differentiation and 
ageing of leaves, but abiotic stress can inhibit carotenoid production (Hank et al. 
2019).

▪ Amount of carotenoids is commonly expressed in different units, e.g., as mass per 
unit surface area (µg cm−2), or as mass per unit fresh leaf weight (mg g−1).

Biophysical and Biochemical Variables
Leaf carotenoid content (Cxc)

(a)

2424

Wocher et al. (2020)



▪ “Anthocyanins are actively produced as a result of 
environmental stresses (e.g., low or high temperatures), 
during senescence and following budburst, before the 
photosystems are fully developed.” (Gamon & Surfus 1999; 
Croft & Chen 2017) 

▪ Hence, they can be of interest for precision agriculture, since 
anthocyanins are typically present when plants suffer from 
environmental stresses such as drought, freezing, air 
pollution or nutrient deficiency (Lee & Gould 2002; Springob
et al. 2003). 

▪ Anthocyanins are the most common class of flavonoids, i.e. 
the most widespread red pigments (Hank et al., 2019). 

▪ They are responsible for the orange to red, or purple to blue 
coloration in the tissue depending on the molecule, 
temperature and pH value, as it can be found, for instance, 
in blueberry, raspberry, black rice or black soybean (Tanaka 
et al. 2008).

Biophysical and Biochemical Variables
Leaf anthocyanin content (Cant)

25

Figure reprinted from Gao  et. al. (2013)



▪ Light absorption by pigments in the chloroplast 
produces a unique absorption pattern in the visible 
spectrum, with higher absorption in the blue and red 
wavelengths than in the green wavelengths.

▪ Photosynthetic pigments, primarily chlorophylls and 
carotenoids (e.g. lutein, betacarotene, zeaxanthin, 
lycopene) strongly absorb light.

▪ Other non-photosynthetic pigments also absorb in this 
wavelength region, such as anthocyanins (large diverse 
group of flavonoids creating leaf, flowers and fruit 
color; Ustin & Jacquemoud 2020).

Image credit: Courtesy of Luis Guanter
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Biophysical and Biochemical Variables
Leaf Pigments
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▪ “One aspect of detecting stress in 
plants from hyperspectral data 
that has received considerable 
attention is the measurement of 
leaf water content.” (Murphy et 
al. 2019) 

▪ Leaf water content (Cw) or 
equivalent water thickness 
(EWT) describes the thickness of 
a theoretical layer of water (in 
cm), which absorbs radiation 
according to the Lambert–Beer 
law (Nobel 2009). 

▪ Hence, EWT corresponds to the 
volume of water that is stored 
within the cells of living 
vegetation (Hank et al. 2019).

Biophysical and Biochemical Variables
Leaf water content (Cw / EWT) Figure reprinted from Wocher et al. (2020)
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▪ For a remote sensor with a defined field of view, it is difficult to 
decouple the contributions of leaf water content and LAI. Thus, the 
total canopy water content per unit ground area (CWC, g m−2), rather 
than leaf EWT is usually “observed” or retrieved (Clevers et al. 2010).

▪ CWC is a measure for the moisture state of a canopy, which is of 
interest for practical farming for the detection of plant water stress.



▪ “LMA is an essential indicator of plant functioning, including 
photosynthetic and respiratory rates, chemical composition or resistance 
to herbivory (de la Riva et al. 2016). The importance of LMA for farming 
compared to the other variables is therefore rather indirect but 
nonetheless important, in particular regarding the relationship of LMA 
to photosynthesis–nitrogen relationships (Poorter & Evans 1998).”

▪ Leaf Mass per Area (LMA) denotes the relation of leaf mass to leaf area 
in a unit of kg dry matter per m2 or g per cm² leaf area.

▪ LMA is a fundamental leaf functional trait playing a key role in 
ecosystem modelling (Asner et al. 2011).

Biophysical and Biochemical Variables
Leaf mass per area (LMA)

LMA [g cm-2]

0.0 0.01

28

Image credit: Courtesy of Martin Danner

▪ LMA is a measure of the leaf composition: the first leaves developed by a plant at the beginning of its 
individual growth cycle usually are rather lightweight, so that the area available for the interception of solar 
radiation expands rapidly during early growth phases. During later development stages, plants tend to invest 
more biomass into the structural stability of the leaves, causing the LMA to increase over the course of a 
growing period (Hank et al. 2019).



▪ „Nitrogen availability enables rapid and early crop growth, increases protein content of 
crops, facilitates the uptake and utilization of other nutrients such as potassium and 
phosphorous, improves fruit quality, and controls overall growth of plants [..] Analyzing
the N amount in soil and crops and the application of N fertilizer in the event of deficits 
are essential to improve crop production….“ (Yousfi et al. 2019)

▪ N is taken up by the roots from soil in the form of NH4+ and NO3−, and it is a rather 
small component of leaf dry weight, ranging from 0.3% to 6.4% (Wright et al. 2004). 

▪ A large amount of N is invested in proteins (and chlorophylls) within the leaf cells, with 
the proteins being the major N containing biochemical constituent of plants (Kokaly et 
al. 2009).

▪ Vegetation growth is not a static but a dynamic process of constant nitrogen turnover 
(Kattge 2002). 

▪ Early in a growing season N is bound in vegetative tissues. During the reproductive 
phase, N is moved or reallocated from the vegetative organs (leaves) to reproductive 
structures, such as seeds, ears or fruits (Ohyama 2010).

Biophysical and Biochemical Variables
Leaf protein (Cp) / nitrogen content (N)
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Hemi-Cellulose
25%

Structural and
other N 6.8%

Bioenergetics 5.0%

CO2-Fixation 26.0%

Non-Chloroplast N
25.0%

Biosynthesis 18.3%

Light Harvesting 18.9%

Rubisco; 22.00%

Electron Transport; 2.40%

Coupling Factor; 2.60%

Ribosomal proteins; 5.00%

Amino acids; 2.50%

Envelope proteins; 3.30%

Chlorophyll; 1.70%

Photosystem II; 4.00%

Chlorophyll binding proteins; 6.00%

Photosystem I; 7.20%

RNA; 7.50%

Carbonic anhydrase; 1.00%
Calvin cycle; 3.00%

Nitrogen
5%

Cellulose
50%

Lignin
20%

Nitrogen as key component of biomass (left) and its proportional 
allocation in a C3 plant leaf (right). Numbers based on Chapin et 
al. (1987). Figure reprinted from Berger et al. (2020).

Biophysical and Biochemical Variables
Leaf protein (Cp) / nitrogen content (N)
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▪ “Lignin from crop residues plays an important role in the 
soil organic carbon cycling, as it constitutes a recalcitrant 
carbon pool affecting nutrient mineralization and carbon 
sequestration. Its function in plants also includes the 
defence against abiotic and biotic stresses, especially 
pathogens and insects” (Frei et al. 2013).

▪ Carbon-based constituents (CBC) include cellulose, lignin, 
hemicellulose, sugars and starch. These abundant 
molecules produced by terrestrial photosynthesis are the 
main components of non-photosynthetic vegetation (NPV).

▪ Each constituent of CBC has a specific carbon content (Ma 
et al. 2018).

▪ “Together with the carbohydrate polymers cellulose and 
hemicellulose, lignin forms the largest portion of 
“lignocellulosic” plant materials. Thus, lignin accounts for a 
substantial portion of the total organic carbon in the 
biosphere, surpassed only by cellulose.” (Frei et al. 2013)

Biophysical and Biochemical Variables
Carbon-based leaf constituents (CBC)
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▪ Concept: During photosynthesis, plants absorb sunlight in the 400–700 nm spectral range. A small fraction of the 
energy absorbed is re-emitted at longer wavelengths (650-800 nm) as a faint signal known as sun-induced 
chlorophyll fluorescence (SIF). 

▪ The strong link between SIF and photosynthesis opens possibilities of inferring gross primary productivity (GPP) (= 
gross uptake of atmospheric carbon dioxide (CO2)) through SIF (Schlau-Cohen & Berry 2015; Mohammed et al. 
2019). 

▪ Note that the very coarse spatial resolutions of current satellite SIF sensors (40 km GOME-2), and also those in the 
near future, e.g. FLEX with 300 m, is very limited for agricultural applications, except at regional/global level.
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Biophysical and Biochemical Variables
Sun-induced fluorescence (SIF)
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Canopy level variables or traits mainly describe the structural properties of a vegetation stand, characterized 
through:

▪ Morphology of plants and phytoelements
▪ Phenology of individual plants
▪ Vitality of individual plants
▪ Arrangement and density of the plants
▪ Composition of plant species (natural vegetation vs. cultivated vegetation)
▪ Geometry and reflectivity of soil background

33

Biophysical and Biochemical Variables
Canopy Level Traits

Many individual
plants

Soil background

+ =+

Positions of plants
within canopy

Vegetation canopy

Figure reprinted from 
Kuester et al. (2014) 
with permission from IEEE  



▪ LAI is the biophysical vegetation trait that attracted most interest in optical remote sensing studies related to 
agriculture. “Many applications, including crop growth and yield monitoring, require accurate long-term time 
series of leaf area index (LAI) at high spatiotemporal resolution with a quantification of the associated 
uncertainties” (Yin et al. 2019)

▪ In general, LAI is defined as half the total leaf area per unit horizontal ground area (Jonckheere et al. 2004), 
though different LAI definitions exist: 

− Plant Area Index (PAI), accounting for non-green plant elements during the measurements. Note that most indirect 
methods used to estimate LAI from upward looking canopy transmittance corresponds to PAI rather than LAI! 

− Green Area Index (GAI): accounts for the functioning of the aboveground parts of the plants (crops), which are 
photosynthetically active during a significant fraction of the growth cycle (Boegh et al. 2002; Duveiller et al. 2012). Very 
important variable for agriculture & nitrogen content (Verrelst et al. 2014; Amin et al. 2021).

− True GAI: half the developed area of green elements per unit horizontal ground area (destructive measurements).

− Apparent GAI (effective LAI, or PAI): the value retrieved from remote sensing observations that depends on the (turbid medium) 
assumptions associated to the estimation algorithm. Effective LAI only considers random positions of leaves, and is referred to the 
value retrieved from green fraction (gap fraction) measurements based on turbid medium assumption (DHP, LAI2200)  (Jonckheere et 
al. 2004; Richter et al. 2009).

Biophysical and Biochemical Variables
Leaf Area Index (LAI)

34
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Biophysical and Biochemical Variables
Leaf Area Index (LAI)

Results from the project 
“VieWBay – Virtual Water 
Space Bavaria”, funded by 
the Bavarian Ministry of 
Environment



▪ Leaf inclination angle distribution (LAD) or average 
leaf inclination angle (ALIA) is an important 
characteristic of vegetation canopy structure affecting 
light interception within the canopy.

▪ Information of ALIA can be also used as an indicator 
of water-stress: significant correlations were found 
between inclination angle and leaf water content in 
leaflets and petioles of crops (Nagasuga et al. 2013).

▪ Leaf orientation with respect to the position of the 
sun is a key factor in determining the amount of light 
intercepted by a leaf, and also affects the fraction of 
incident sunlight that penetrates the canopy to lower 
layers of leaves (Huemmrich 2013). 

▪ Orientation of a leaf is described by its azimuth and 
inclination angles (in °).

Biophysical and Biochemical Variables
Leaf inclination angle distribution (LAD)
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Winter Wheat at noon (12:00)



Biophysical and Biochemical Variables
Leaf inclination angle distribution (LAD)
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Maize at noon (12:00)



Biophysical and Biochemical Variables
Leaf inclination angle distribution (LAD)
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Maize hourly data…



Biophysical and Biochemical Variables
Crop Mapping
For the retrieval of many of the leaf level and canopy 
level biophysical and biochemical variables, knowledge 
about the crop type is crucial as a-priori information.

3939

https://map.onesoil.ai/

https://ows.geo.hu-
berlin.de/webviewer/landwirtschaft/index.html

https://map.onesoil.ai/2018#2/44.35/-43.66


▪ Fractional vegetation cover (fCOVER or FVC) is useful for various 
applications in the field of agriculture - ranging from irrigation 
(e.g., Calera et al. 2001) and crop residues management (e.g., 
Daughtry et al. 2005) to yield estimations (e.g. Castaldi et al. 
2015). 

▪ Green fCOVER is an important biophysical variable describing the 
Earth's surface. A wide overview is given by Liang & Wang (2020), 
chapter 12: 

▪ “Fractional vegetation cover is generally defined as the ratio of 
the vertical projection area of above-ground vegetation organs on 
the ground to the total vegetation area.” 

Biophysical and Biochemical Variables
Fractional vegetation cover (fCOVER or FVC)
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Image credit: Jochem Verrelst / ARTMO

▪ fCOVER in [%], the fraction of the green vegetation in the nadir direction, is used to separate vegetation and soil 
in energy balance processes, including temperature and evapotranspiration (Li et al. 2015).

▪ fCOVER is also known as green ground cover (GGC%) (Zillmann et al. 2015).



▪ Remote sensing time-series of fraction of absorbed photosynthetically active 
radiation (fAPAR) have been “confirmed to be a reliable tool for regional crop 
yield forecasting with a strong potential to contribute effectively to operational 
systems such as those currently running at continental/global level (GIEWS, NASS, 
FAS, CropWatch or MCYFS)” (López-Lozano et al. 2015)

▪ Photosynthetically active radiation (PAR): corresponds to the incoming solar 
radiation in the spectral range of 400–700 nm.

▪ Absorbed photosynthetically active radiation (APAR): corresponds to the amount 
of PAR absorbed by the plant for photosynthesis (Gallo and Daughtry 1986). 

▪ Fraction of absorbed photosynthetically active radiation (fAPAR): is the 
proportion of PAR absorbed by the plant, expressed as fraction.

Biophysical and Biochemical Variables
Fraction of absorbed photosynthetically active radiation
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▪ fAPAR is an important biophysical variable in models assessing the primary productivity of vegetation and, more 
generally, in carbon cycle models between the terrestrial boundary layer and the atmosphere (Vina and Gitelson 
2005, Rahmann et al. 2014). 

▪ According to Cawse-Nicholson et al. (2021) fAPAR is not strictly a trait. Though, it was listed alongside others due 
to its direct relation to primary productivity (Zhang et al. 2012).

Image credit: Jochem Verrelst / ARTMO



▪ NPV refer to those plant parts that cannot perform 
photosynthesis, such as plant litter, crop residues, senescing 
foliage, branches and stems (Li & Guo 201, Hank et al. 2019). 

▪ For agricultural applications, NPV biomass (e.g. in g/m²) or 
crop residue cover (%) is particularly interesting since it 
indicates (seasonal) drought events or other severe injuries. 

▪ Crop residue (CR) cover on the soil surface or a 
protective mulch:

− significantly reduces erosion (through wind and water), 
nutrient loss, evaporation, and soil temperature;

− reduces soil compaction due to agricultural machinery 
(Pepe et al., 2020); 

− enhances soil organic C through improvement of the soil 
structure; 

− crop residues may contain significant amounts of nitrogen 
and carbon, which enter the soil through ploughing.

Biophysical and Biochemical Variables
Non-photosynthetic vegetation (NPV) 
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Figure reprinted from Berger et. al. (2021)



Spectral Information

Semantic Information

Regression Models

How to translate the complex spectral information into semantic information (which we can understand)?

Parametric

Linear regressions
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Biophysical and Biochemical Variable Retrieval
Parametric Regression Methods

A variety of different indices exist with the help of which the data space can be reduced when 
focusing on a specific land surface variable.

Widely used examples (in the field of agriculture) are:

OSAVI
Optimized Soil 

Adjusted Vegetation 

Index
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et al. (1996)
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Example:
HyMap, Neusling (Southern Germany), 27. July 2009
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Figure modified after:
APARICIO et al. (2000): Spectral vegetation indices as nondestructive tools for 
determining durum wheat yield. Agron. J., 92, pp. 83–91. 

hNDVI

PRI

LAI

LAI

• irrigated
x rainfed

Example Leaf Area Index: 

hNDVI and PRI both show a high correlation with 
the LAI.

From LAI values > 2.0, however, both indices also 
show strong saturation tendencies...

Biophysical and Biochemical Variable Retrieval
Parametric Regression Methods
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▪ Hyperspectral vegetation indices make use of the advantage of hyperspectral data by focusing on very 
narrow bands (low FWHM bandwidth). 

▪ Thus, potentially improved estimation results can be obtained compared to multispectral indices. 
▪ The position of the channels used depends on the variable being investigated. 
▪ However, hyperspectral datasets are characterized not only by narrow channels, but especially by a 

continuous coverage of the reflectance spectrum...
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Area beneath spectrum

-

Enclosed area

=

Spectral integrals in 
principle can be applied to 
all (isolated) absorptions, 
e.g. also to the cell water 
absorption at ca. 970nm…

Area beneath spectral hull

Boundary 
Wavelengths

Biophysical and Biochemical Variable Retrieval
Parametric Regression Methods

50



Biophysical and Biochemical Variable Retrieval
Parametric Regression Methods

51

Example:
HyMap, Neusling (Southern Germany), 27. July 2009



Conventional Index: 

NDVI

Hyperspectral Index:

Chlorophyll-Absorption-Integral (CAI)

OPPELT, N. (2004): Hyperspectral Monitoring of Physiological Parameters of Wheat during a Vegetation Period Using AVIS Data. 
Int. J. Rem. Sens., 25 (1), pp. 145-160. 

Biophysical and Biochemical Variable Retrieval
Parametric Regression Methods
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Biophysical and Biochemical Variable Retrieval
Parametric Regression Methods

Strengths Limitations
▪ Simple and comprehensive regression 

models
▪ Little knowledge of user required
▪ Easy implementation
▪ Computationally inexpensive: fast in model

establishment and mapping

▪ Makes only poor use of the available information within the 
spectral observation; at most a spectral subset is used. 
Therefore, they tend to be more noise-sensitive as compared 
to full-spectrum methods 

▪ Parametric regression puts boundary conditions at the level of 
chosen bands, formulations and regression function

▪ Statistical function accounts for only one variable at a time
▪ Limited transferability to different measurement conditions, 

sensor & site characteristics, crop and soil type
▪ No uncertainty estimates are provided. Hence the quality of 

the output maps remains unknown.
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Spectral Information

Semantic Information

Regression Models

How to translate the complex spectral information into semantic information (which we can understand)?

Parametric Nonparametric

Linear regressions Nonlinear regressions
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Biophysical and Biochemical Variable Retrieval
Nonparametric Regression Methods

The group of nonparametric regressions can be further subdivided into:

▪ Linear nonparametric regressions or „chemometrics“
(Lavine and Workman 2013)

▪ Nonlinear nonparametric regressions,
also known as machine learning (ML)

Nonparametric methods directly define regression functions according to information from remotely sensed data. 
Hence, in contrast to parametric regression methods, a non-explicit choice is to be made on spectral band 
relationships, transformation(s) or fitting functions (Verrelst et al. 2015).

While in parametric models a finite number of parameters exist, nonparametric models have a (potentially) infinite 
number of parameters. Hence, nonparametric models exhibit a growing complexity of the model with number of 
training data.

55

Figure reprinted from Peris-Díaz & Krezel (2020)



Linear nonparametric regression algorithms, also known as chemometrics, apply 
linear transformations and have been shown to perform well for retrieving 
vegetation traits from imaging spectroscopy data, among others, due to their fast 
performance. These methods also have been used quite frequently since they 
became standard methods in image processing software packages. Often, 
dimensionality reduction step is involved: PCR and PLSR are intrinsically based on 
this principle. 

Chemometric methods include, e.g.: 

▪ Stepwise multiple linear regression (SMLR), e.g. Atzberger et al. (2010) 
▪ Principal component regression (PCR), e.g. Liu et al. (2017)
▪ Partial least squares regression (PLSR), e.g. Wold (2001)
▪ Ridge (regulated) regression (RR) e.g. Geladi and Kowalski (1986) 
▪ Least Absolute Shrinkage and Selection Operator (LASSO) e.g. Tibshirani (1996) 

Biophysical and Biochemical Variable Retrieval
Nonparametric Regression Methods
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„PLSR is attractive for its 
straightforward implementation and
interpretation, but requires 
bootstrapping-based methods to 
estimate and map prediction 
uncertainties“ (Wang et al. 2019)

Figure reprinted from Peris-Díaz & Krezel (2020)



▪ Machine Learning is a subfield of Artificial Intelligence (AI). 

▪ “The goal of machine learning is to develop methods that can automatically 
detect patterns in data, and then to use the uncovered patterns to predict 
future data or other outcomes of interest.” (Murphy, 2012).

▪ ML is closely related to statistics and data mining, but differs slightly in terms 
of its emphasis and terminology.

Biophysical and Biochemical Variable Retrieval
Nonparametric Regression Methods
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▪ There is a wide variety of ML models for regression and function approximation.

▪ ML regression algorithms are powerful candidates for the estimation of biochemical & biophysical vegetation 
traits from imaging spectroscopy data due to their ability to perform adaptive, nonlinear data fitting.

▪ Note that the term “machine learning” is sometimes also (wrongly…) used for linear regression or chemometric 
methods.



▪ Machine learning is based on (often non-parametric and non-linear) regressions.

▪ So, in principle, it is initially nothing else than working with vegetation indices, but several spectral channels
are used at the same time (possibly all of them, whereby a specific so-called band selection/dimensionality
reduction, often improves the result, depending on the ML algorithm used).

▪ Furthermore, with the help of these advanced statistics, it is quasi possible to create several empirical models
at the same time (multivariate statistics).

▪ Thus, multiple input data are linked with multiple target data via statistical models.

▪ Main difference to simple parametric regression approaches is that in ML methods learning is involved!
Algorithms can be based on linear regression, but weights or coefficients of features are iteratively updated
with new data until the optimal model is found.

▪ A large (or a distinctively variable) amount of training data is used for this purpose. Training data could be e.g.
spectral signatures and associated biophysical variables.

Biophysical and Biochemical Variable Retrieval
Nonparametric Regression Methods
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Families of commonly used ML algorithms include Artificial neural networks, Decision trees, and Kernel-
based regressions.

Examples of machine learners commonly used in remote sensing are:

▪ SVR: Support Vector Regression (the values that are positioned in an artificially augmented higher
dimensional feature space along a so-called hyperplane define the model).

▪ RFR: Random Forest Regression (ensemble algorithm based on multiple decision trees).

▪ ANN: Artificial Neural Networks (generic term for all algorithms that learn in multiple layers of linked
neurons, often e.g. MultiLayer Perceptron Network Regression).

▪ GPR: Gaussian Processes Regression (provide a probabilistic approach for learning generic regression
problems with kernels and thus additionally provide confidence intervals → uncertainty assessment).

Biophysical and Biochemical Variable Retrieval
Nonparametric Regression Methods
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Biophysical and Biochemical Variable Retrieval
Nonparametric Regression Methods

In addition to feeding training data, all of these algorithms still can/need to be parameterized. The
parameters are different for different learners. For SVR, for example, the user can optimize the model using
two “tuning screws":

▪ Kernel Coefficient "Gamma" or γ describes the "effect" of the training data:
▪ High gamma value: the algorithm follows the training data very closely, more complex relationships

can be mapped.
▪ Low gamma value: The model remains more "agile" and not so rigidly bound to the training data,

danger of so-called overfitting is reduced.

▪ C parameter defines the distance between support vectors and hyperplane:
▪ High C-value: the result is very accurate, but it may not be possible to convert all input values into

results.
▪ Low C-value: The probability that many different input values can be converted into results increases,

the accuracy of the estimate can decrease.
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Strengths Limitations
▪ Full-spectrum methods: making use of the complete 

spectral information.
▪ Advanced, adaptive (non-linear) models are built.
▪ Methodologically, accurate and robust performance is 

enabled.
▪ Some ML regressions cope well with datasets showing 

redundancy and high noise levels.
▪ Once trained, imagery can be processed time-efficiently.
▪ Some of the nonparametric methods (e.g.  ANNs, decision 

trees) can be trained with a high number of samples 
(typically >1,000,000).

▪ Some ML methods provide insight in model development 
(e.g. GPR: relevant bands; decision trees: model structure).

▪ Some statistical models can provide multiple-outputs (e.g. 
PLRS, ANN, SVR, GPR and KRR)

▪ Some ML methods provide uncertainty intervals (e.g. GPR)

▪ Training can be computationally expensive.
▪ Hypercomplex models can be generated. Their generic 

potential is limited and hence they do not generalize 
well, based on the training data, also known as 
problem of overfitting.

▪ Models’ performance on new unseen data depends on
the appropriate design of the training data set: 
representativeness!

▪ Some regression algorithms are difficult (or even 
impossible) to train with a high number of samples.

▪ Expert knowledge is required, e.g. for tuning.  However, 
toolboxes exist automating some of the steps in this 
sub-process.

▪ Some regression algorithms elicit instability when 
applied with datasets statistically deviating from the 
datasets used for training: underfitting. 

Biophysical and Biochemical Variable Retrieval
Nonparametric Regression Methods



Spectral Information

Semantic Information

Regression Models

How to translate the complex spectral information into semantic information (which we can understand)?

Mechanistic Models

Parametric Nonparametric Radiative Transfer Models

Linear regressions Nonlinear regressions Physically-based inversion
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Biophysical and Biochemical Variable Retrieval
Radiative Transfer Models
Mechanistic principles of spectral and spatial scaling effects can be analysed by means of physically-based radiative 
transfer models (RTM). RTMs describe the interaction of photons with biophysical and biochemical plant properties 
by means of physical laws. 

RTMs are widely used in remote sensing science for retrieval (inversion) but also for the development of parametric 
regressions, generation of training data for nonparametric regressions and beyond that for designing new Earth 
Observation missions. 

Exemplary groups of RTMs: 

Detailed descriptions & further classifications of RTMs can be found in Verrelst et al. (2019a) and Malenovský et al (2019).

Computer graphic model
(e.g. drat, Raytran, FLIGHT)

Hybrid model (GO + TM)*
(e.g. DART, INFORM)

Geometric optics*
(e.g. Chen & Leblanc 1997)

Turbid medium*
(e.g. SAIL, Verhoef 1984)

* Figures from http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI3/RAMI3.php
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Four-stream canopy reflectance model:
1. Direct solar flux
2. Diffuse downward flux
3. Diffuse upward flux
4. Direct observed flux (radiance)

Input parameters to PROSPECT:

Leaf Chlorophyll
Leaf Water
Leaf Dry Matter
Leaf Mesophyll Structure N

LAI – Leaf Area Index
Average Leaf slope Parameter a
LIDF bimodality parameter b
Hot spot parameter q
Fraction brown leaf area fB
Layer dissociation factor D
Soil BRDF parameters (b, c, B0, h)
Soil moisture
Crown coverage

Outputs from PROSPECT:

Fraction diffuse sky irradiance
Dry soil reflectance

Solar zenith angle
Viewing zenith angle
Relative azimuth angle

Input parameters to 4SAIL2:

D
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x
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Leaf Variables:

• Structure Coefficient (N)

• Chlorophyll Content (Cab)

• Water Content EWT (Cw)

• Leaf Mass Area (Cm)

SAILH

Canopy Structure:

• Leaf Area Index (LAI)

• Hot Spot (Hspot)

• Average Leaf Angle (ALA)

Illumination & 
View Geometry:

• Solar Zenith Angle (tts)

• Sensor Zenith Angle (tto)

• Sensor Azimut (psi)

Canopy Reflectance

Leaf  Reflectance 
&Transmittance

Soil Reflectance

PROSPECT

Biophysical and Biochemical Variable Retrieval
Radiative Transfer Models
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Animation credit:

Biophysical and Biochemical Variable Retrieval
Radiative Transfer Model Inversion
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Maize

N bands =42 
RMSE = 0.54
R2 = 0.93

N bands =64
RMSE = 0.55
R2 = 0.91

Soybean

Biophysical and Biochemical Variable Retrieval
Radiative Transfer Model Inversion
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Biophysical and Biochemical Variable Retrieval
Radiative Transfer Model Inversion

Strengths Limitations
▪ Full-spectrum methods: making use of the 

complete spectral information.
▪ Spectral signature is linked to physical processes 
→ we can learn from the models!

▪ Potentially transferable in space and time

▪ Compromise between complexity/accuracy 
and “invertibility” 

▪ Computationally expensive
▪ Equifinality problems
▪ Parameterization (constraining) requires a-

priori information
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Spectral Information

Semantic Information

Regression Models

How to translate the complex spectral information into semantic information (which we can understand)?

Mechanistic Models

Parametric Nonparametric Process ModelsRadiative Transfer Models

Linear regressions Nonlinear regressions AssimilationPhysically-based inversion
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Meteorology

Hank, T., Frank, T., Bach, H. & Mauser, W.
(2013): On the effect of multiseasonal earth
observation availability for assimilation-
supported modelling of winter wheat yield.

Hank, T., Frank, T., Bach, H., Spannraft, K. &
Mauser, W. (2013): Assessing the required
temporal frequency of optical EO acquisitions
for agricultural information systems.

T  i  m  eSowing
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s

Phenology

Modelled Yield Map

Harvest

Measured Yield Map
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Production”, funded by ESA IAP

74



With their deductive capabilities, physical models differ from regression approaches: the combination of logical
(mechanistic) principles enables extrapolation to predictions about behaviours not present in earlier sampled field
data. In contrast, regression or learning algorithms identify patterns happening in the data and build relationships
without asking for a physical basis (=inductive capability), see Baker et al. (2018).

Though physical models are capable of describing causality between inputs and outputs by means of physical laws,
they tend to oversimplify the reality. Instead, ML algorithms establish nonlinear relationships between any kind of
data without incorporation of physical rules (Camps-Valls et al. 2018). However, one needs to know the physical
basis that is underneath the data. This helps for designing the training dataset and selecting the inputs.

So, should we replace physically-based models with machine learning algorithms? No, we need both: 

▪ The spatial and temporal prediction ability of machine learning should be, at least, consistent with the patterns 
observed in physical models.” (Reichstein et al. 2019) 

▪ The two approaches are complementary: mechanistic models could be used to provide physical constraints and 
domain knowledge to machine learning algorithms (Reichstein et al. 2019; Weiss et al. 2020).

Biophysical and Biochemical Variable Retrieval
Physically-based vs. statistical Methods
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How to translate the complex spectral information into semantic information (which we can understand)?

Mechanistic Models

Parametric Nonparametric Process ModelsRadiative Transfer Models

Linear regressions Nonlinear regressions AssimilationPhysically-based inversion
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How to translate the complex spectral information into semantic information (which we can understand)?

Mechanistic Models

Parametric Nonparametric Process ModelsRadiative Transfer Models

Linear regressions Nonlinear regressions AssimilationPhysically-based inversion
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Biophysical and Biochemical Variable Retrieval
Hybrid Methods

Hybrid techniques denominate a combination of at least two methods in synergic use to obtain the objective
(retrieval) more efficiently. For vegetation properties mapping from Earth observation data, hybrid methods are
often referred to the combination of machine learning methods and RTMs: thus combining flexibility and scalability
of ML while respecting the physics encoded in the RTM (Camps-Valls et al. 2018).

How about a concrete example for hybrid mapping?

WOCHER, M., BERGER, K., VERRELST, J. & HANK, T. (2022): Retrieval of 
carbon content and biomass from hyperspectral imagery over cultivated 
areas. ISPRS Journal of Photogrammetry and Remote Sensing, Volume 
193, pp. 104-114. https://doi.org/10.1016/j.isprsjprs.2022.09.003



79

▪ Agriculture (together with forestry and land use change) is contributing approx. 20% 
of the global GHG emissions.

▪ Long-Term storage of carbon in agriculturally used soils may play a role as carbon 
sink.

▪ “Carbon Farming” is part of the EU Green Deal.

Wouldn’t it be nice, if we could measure the amount of carbon stored in 
agricultural crops (and within their residues) with a spectrometer?

Biophysical and Biochemical Variable Retrieval
Hybrid Methods – Carbon Mapping Example
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Irlbach site | May 30th 2021

Airborne data:
HyperSense CHIME preparation campaign
AVIRIS-NG airborne acquisitions
(377-2501 nm @425 bands) 
→ resampled to EnMAP (233 bands)

In situ data:
▪ Dry & fresh biomass (AGBdry, AGBfresh)
▪ Carbon content (Carea)
▪ Nitrogen content (Narea)
▪ Leaf area index (LAI)

81

🗲 Only 20 measurements
🗲 Only mono-temporal
🗲 Only winter wheat at similar growth stages



▪ 3000 members 
▪ Parameters varied over wide value range

Carbon based constituents (CBC)
include sugars, starch, lignin, 

cellulose and hemicellulose → CBC ≠ C

Conversion factor needed!
→ Mean C-concentration (leaves|stalks|fruits) = 43.3%

4 S A I L

Leaf 
reflectance

Leaf 
transmittance

PROSPECT-PRO

PROSAIL-PRO training database
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hspot

C
an

o
p

y 
R

ef
le

ct
an

ce

𝐶𝑎𝑟𝑒𝑎 =
𝐶𝐵𝐶 × 𝐿𝐴𝐼 × 10,000

2.31
[𝑔 𝑚−2]

𝐴𝐺𝐵𝑑𝑟𝑦 = 𝐶𝑝 + 𝐶𝐵𝐶 × 𝐿𝐴𝐼 × 10,000 𝑔 𝑚−2

𝐴𝐺𝐵𝑓𝑟𝑒𝑠ℎ = 𝐶𝑝 + 𝐶𝐵𝐶 + 𝐶𝑤 × 𝐿𝐴𝐼 × 10,000 𝑔 𝑚−2

SZA  
OZA  
rAA



Hybrid Retrieval Workflow

Preprocessing & Model building
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Mapping preparation

M
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n
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Input data

Training Internal Validation Independent Validation



Internal Validation of the GPR Model
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Spatial Mapping with the GPR Model
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Independent Validation of the GPR Model Results

▪ Hybrid modeling approaches are a computationally efficient way for solving inference 
problems from Earth observation data.

▪ They reduce the need for exhaustive in-situ measurements to compile training databases.

▪ The GPR-Models proved to be flexible, transferable, and reasonably accurate for the retrieval 
of Carea, AGBdry, and AGBfresh from (simulated) EnMAP imagery.
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Next-generation spaceborne hyperspectral sensors
Insert and extend table with actual, close to launch and future 
hyperspectral sensors, see Berger et al 2020a:

Mission (organiz., 
country)

Spectral range (SSD, 
no. of bands)

Spatial resolution 
(swath)

Repeat interval
(days)

Launch Purpose Reference

DESIS (DLR, Germany) 400-1000 nm (2.55 nm , 
235 bands)

30 m (30 km) 3 (63 TOD) 29.06.2018 Scientific precursor Krutz et al. (2019)

PRISMA (ASI, Italy) 400-2500 nm (6-12 nm, 
240 bands)

30 m (30 km) 29 (7, repeat roll m.) 22.03.2019 Technology 
demonstrator

Loizzo et al. (2019)

HISUI (METI, Japan) 400-2500 nm (10-12 nm, 
185 bands)

20 m (cross-track) x 30 
m (along-track) (20 km)

3 (63 TOD) 05.12.2019 Operational Matsunaga et al. (2017)

EnMAP (DLR, Germany) 400-2500 nm (6.5-10 nm, 
242 bands)

30 m (30 km) 27 (4 off-nadir) 01.04.2022 Scientific precursor Guanter et al. (2015)

SHALOM (Italian-Israeli) 400-2500 nm (10 nm, 275 
bands)

10 m (30 km) ? 2022 Operational/ 
commercial

Feingersh & Ben Dor
(2015)

CHIME (ESA) 400-2500 nm (225 bands) 20-30 m (290 km?) 10-12.5 2025-2030 Copernicus high-
priority mission 
candidate

Nieke & Rast (2018), 
Ustin & Middleton (2021)

SBG (NASA, U.S) VSWIR: 380-2500 nm (10 
nm, 210 bands)

30-45 m (150 km) < 16 2026/2027 Operational NASA (2018); Cawse-
Nicholson et al. (2021)

FLEX/FLORIS (ESA) 500-780 nm (434 bands) 300 m (150 km) 27 planned  for 
2024

Scientific precursor Coppo et al. (2017)
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Conclusions
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▪ The questions of practical agriculture are of a quantitative nature.
→ Hyperspectral remote sensing targets variables that come with physical units.

▪ Crop development is a temporally highly dynamic process.
→ We are looking forward to the new missions to learn how to make the best possible use 

of time-series from imaging spectrometers.

▪ Models (physical as well as statistical ones) are digital twins of the real world.
→ We need to bring everything that needs mapping into the digital world.

▪ There still are strong deviations between modeled and measured reflectances.
→ We need to get back into the lab and into the field and improve the models. 

▪ At the same time don‘t let us forget all the data that we have collected during the last 40 years. 
→ We need to share and harmonize this data to improve transferability of statistical models.



Thank You for Your Attention!

t o b i a s . h a n k @ l m u . d e

w w w . g e o g r a p h i e . u n i - m u e n c h e n . d e

w w w . e n m a p . o r g

90

11th Advanced ESA Training 
Course on Land Remote Sensing


