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? Why irrigation?
L

‘ Irrigation practices and the role of soil moisture

% Irrigation monitoring through satellites

« Overview on irrigation monitoring through optical sensors (hints), microwave sensors, and data
assimilation approaches

 How much information on irrigation dynamics can be retrieved by satellite soil moisture?

@ Outlook

« Main challenges to be faced
 How can satellite-derived irrigation products be useful/used?
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Many scientists suggest to rename the era we are living in as the Anthropocene. Humans are modifying the natural

water cycle at an unprecedented scale.

Total Human w i ARG (Gieen s lve + 6oy) 24206

Land Evap@ansptraﬁt@m
«

% Blue:Water Use = SGroundwaters g 2 2= R Ve Discharge. to
4.0 +30% recharges1 3+ 509 a-{' ) Ocean'46+ 10%

S

Gray\Water Use Groundwater Discharge Sy,
(pollution)i1"4+=40% toOcean4:5:+70%

St i o
= S/ 'andice’Discharge

InterbasintOcean Circulation

(Abbott et al.,

Ocean Evaporation
420 + 20%

2019;

Blue water: the water available in
rivers, lakes, shallow aquifers.

Green water: the water stored iIn
unsaturated soil and later used
for agricultural purposes (i.e.,
irrigation).

Grey water: fresh water needed to
dilute the pollutant load.
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https://doi.org/10.1038/s41561-019-0374-y

The USGS (United States Geological
Survey) has recently released the
updated diagram of the water cycle

«... We alter the water cycle. We
redirect rivers, we build dams to store
water. We drain water from wetlands
for development. We use water from
rivers, lakes, reservoirs, and
groundwater aquifers. We use that
water to supply our homes and
communities. We use it for agricultural
irrigation and grazing livestock. We
use it in industrial activities...»

,,,,,,
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Volcanic
stear
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3 . Sublimation k
2, snow, a /T, Condensation
o1
Depositio Evapotranspiration

Precipitation Evaporation

lakes
Wetlands
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Ocean currents

U.S. Dept. of the Interior
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Among the human activities altering
the natural water cycle, irrigation is
the most impactful one.

More than 70% (almost 90% in some countries) of
global freshwater withdrawals are destined to
Irrigation practices.

Rice fields, Spain, 2018 (Foley et al., 2011; doi:10.1038/nature10452)

BUT

Detailed information on irrigation dynamics (i.e., timing, mapping,
and amounts) is generally lacking worldwide.
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AF out
WITHOUT IRRIGATION WITH IRRIGATION =0
Irrigation water is often delivered in a site different from where it is withdrawn (from rivers, dams, groundwater)
Irrigation water alters surface and sub-surface flows

Irrigation increases evapotranspiration, as crops have the optimal amount of water allowing the evapotranspiration at the
potential rate
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From the hydrological point of view

Potential for sustainable irrigation expansion in a 3 °C
warmer climate

Lorenzo Rosa™'2, Davide Danilo Chiarelli® ', Matteo Sangiorgio“", Areidy Aracely Beltran-Pefia® ",
Maria Cristina Rulli® ", Paolo D'Odorico®, and Inez Fung™®' (.
*“Department of Environmental Science, Policy, and Management, University of (allfornl Berke Iey CA 94720; "Department of Gl and Environmental

Engineering, Politecnico di Milano, 20133 Milano, taly; “Department of Electronics, Ir W g, Politecnico di Milano, 20133 Milano,
ttaly; and “Department of Earth and Planetary Science, University of California, Berkelay, CA 9‘720

PNAS, Nov 9, 2020; https://doi.org/10.1073/pnas.2017796117

ARTICLE
OPEN

Warming of hot extremes alleviated by expanding
irrigation

Wim Thiery® "2*, Auke ), Visser® 3, Erich M. Fischer® ', Mathias Hauser® ', Annette L. Hirsch® %,
David M. Lawrence® >, Quentin Lejeune® 8 Edouard L. Davin® ' & Sonia . Seneviratne® '

Nat Communication, Jan 15, 2020; https://doi.org/10.1038/s41467-019-140

75-4

ARTICLES nature
https://dol.org/10.1038/541561-020-00650-8 gCOSClCnCC

W) Check fer updates

Moist heat stress extremes in India enhanced by
irrigation

Vimal Mishra©'2%, Anukesh Krishnankutty Ambika©?, Akarsh Asoka™?, Saran Aadhar',

Jonathan Buzan?, Rohini Kumar©* and Matthew Huber©?

Nat Geoscience, Oct 26, 2020; https://doi.org/10.1038/s41561-020-00650-8

"We find that in up to 35% of currently rain-fed croplands, irrigation could
be expanded as an adaptation strategy to climate change without
negative environmental externalities on freshwater resources.”

"Here we provide observational and model evidence that expanding
irrigation has dampened historical anthropogenic warming during hot
days, with particularly strong effects over South Asia.”

‘heat stress projections in ...regions dominated by semiarid/monsoon
climates that do not include the role of irrigation overestimate the benefits
of irrigation on dry heat stress and underestimate the risks.”

ALL THESE STUDIES RELY ON MAPS OF AREAS EQUIPPED
FOR IRRIGATION AND SIMULATED DATA
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(Huang et al., 2018;
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(Siebert et al., 2015; doi:10.13019/M20599)

.. etal.
(Salmon et al., 2015;

(Nagaraj et al., 2021;
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https://doi.org/10.5194/hess-22-2117-2018
http://dx.doi.org/10.1016/j.jag.2015.01.014
https://doi.org/10.1016/j.advwatres.2021.103910
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The only information available is often represented by statistical
surveys at the country (or even at a coarser) scale

+ Farmers are generally reluctant to share information on irrigation A o N
. . . . AEI [% / cellarea] 0\ gz
doses, as agricultural water is often paid on the basis of 0 a

concessions and not on the basis of actual consumption o gf-_ll
= 1.- 5
. - . . Hl5-10
* Information on irrigation practices are often collected through B 10-20
surveys relying on self-declarations, which can be affected by :gggg
several uncertainties 50/ 75 ,
W 75 - 100 ' gi’{ '
« Information on actually irrigated areas is often dynamic in time Areas equipped for irrigation, GMIA-FAO (Siebert et al., 2015)

Key (unsolved) questions:

% Do we know when and where irrigation practices actually occur?

How much water is used for irrigation?
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Results of a bibliographic search based on the keywords:
«irrigation amounts, irrigation estimates, irrigation mapping,
irrigation timing» AND «satellite, remote sensing»

40
&
3 30
3
% 20
In the last 10 years, the number (per year) of papers -
aimed at monitoring irrigation dynamics through 2" = ' ' T 7] ' l
. . . 0
remOte SenSIng Observat|0n5 Increased by +560% 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
(from 5 to 30+ per year). Year
8
7
During the same time span, 26 scientists published g N0
3+ papers on the topic. L | 11 1 3 j j j
2 —
| g j :‘-‘ _- E F f
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The interest of ESA on this topic: The IRRIGATION+ PrOJect
2011-01-16

The ESA IRRIGATION* p.rOJeCt aims 1o e>.<plore, de_vellop.and Va“d_ate Irrigation water use at 1km/15 day resolution (2011-2017) exploiting @ESA
advanced EO-based algorithms and techniques for irrigation mapping, SMOS soil moisture

guantification and detection of seasonal timing of irrigation from field to N R
regional/global scale.

esa @ Q M e |y cleafe
@ aspire [

IRRIGA‘E%
Sentinel Success Stories [ i

% https://sentinels.copernicus.eu/
web/success-stories/-
/copernicus-sentinels-map-
water-use-in-agriculture/2.4

42°N

41.5°N

Copernicus Sentinels

map water use in
agriculture

2 0 %
ESTIMATED IRRIGATION [mm/15-days]

READ MORE

(Dari et al., 2020; )
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https://doi.org/10.3390/rs12162593
https://sentinels.copernicus.eu/web/success-stories/-/copernicus-sentinels-map-water-use-in-agriculture/2.4
https://sentinels.copernicus.eu/web/success-stories/-/copernicus-sentinels-map-water-use-in-agriculture/2.4
https://sentinels.copernicus.eu/web/success-stories/-/copernicus-sentinels-map-water-use-in-agriculture/2.4
https://sentinels.copernicus.eu/web/success-stories/-/copernicus-sentinels-map-water-use-in-agriculture/2.4

ATION PRACTICES:
r &, o v ST

Soil moisture (i.e., the amount of water stored in the
unsaturated zone) is essential for irrigation
management

ground level

voids SATURATED ZONE

Wilting point Field capacity

Soil Moisture
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OLE\QF SOIL
5E. T 4

\

What really cares is the volume
of water retained by capillarity

A
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IRRIGATION PRACTIC_ A
a" -:"Q;/‘ ;b RE’:’-\’ |

Satelllte soil moisture

Soil moisture is an essential
variable for monitoring irrigation
dynamics (also from space)

A constellation of satellite
sensors for measuring soil
moisture is available

High spatial and temporal
resolutions are achievable
with the latest missions, e.g.,
Sentinel-1, CYGNSS

1980 1990 2000 2010 2020
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Operational soil moisture products

Copernicus Global Land Service

Home Products Use cases Product Access Viewing

Burnt Area

Dry Matter Prod.

FCOVER

Leaf Area Index

Land Cover

(opemicus

Library Get Support

NDVI

Soil Water Index

Surface Soil Moisture (%)
0 50

0 200 400 600 800 km
| I ]
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Soil moisture is an essential variable for monitoring irrigation
dynamics (also from space)

... But not the only one!

Satellite-derived  estimates  of evapotranspiration  fluxes,
vegetation indices, and crop coefficients are widely used as
Irrigation proxies.

2016-01-16

. !
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o

SATURATION INDEX

d 41.5°N
AN :
o
AN
: Satellite-derived Kc in Spain
Satellite-derived ET produced by eleaf SETT T Sk .
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https://doi.org/10.3390/rs12162593
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How can we use satellites for monitoring irrigation?

Optical sensors

Observations retrieved by optical sensors can be used to develop approaches aimed at
detecting changes in vegetation status, at measuring land surface temperature, and at
modeling evapotranspiration (ET)

Such methodologies find widespread use in irrigation detection (i.e., mapping and timing)
applications. They mainly rely on the different spectral response from irrigated and non-irrigated
fields

COPERNICUS NDVI

0.9
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How can we use satellites for monitoring |rr|gat|on’>
Optical sensors

Nevertheless, observations from optical sensors are used for quantification purposes as well.
Several studies focus on ET, with different strategies:

Irrigation estimates calculated as the difference between ET and rainfall (i.e., the natural input)
Irrigation estimated as the difference between satellite and modeled ET
Use of water and energy balances

Irrigation estimated on the basis of ET differences observed over irrigated and non-irrigated
fields

— e Bl b Bl =R 2= K — B WL
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How can we use satellltes for monitoring irrigation?

Microwave (MW) sensors

MW satellite products (e.g., soil moisture) can be used to detect and quantify irrigation. The main
advantage is that they are not affected by weather conditions.

Discrepancies between satellite
(including, theoretically, irrigation)
and modeled (not including
irrigation) data sets

Detection and Mapping methods
based on MW soil moisture

Analysis of satellite soil moisture
data sets and their features

19
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How can we use satellltes for monitoring irrigation?

Microwave (MW) sensors

MW satellite products (e.g., soil moisture) can be used to detect and quantify irrigation. The main
advantage is that they are not affected by weather conditions.

Soil water balance

Quantification methods
based on MW soil moisture

Discrepancies between satellite (including,
theoretically, irrigation) and modeled (not
including irrigation) data sets

20
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How can we use satellltes for monitoring irrigation?

Data Assimilation

NATUR OBSERVATIONS

A %,

Satellite

Airborne

Courtesy of S. Modanesi

In situ
sensors

MODELS Two main tools to understand the Earth surface and

Evapotranspiration

Interception |tS pI'OCeSSGS
/

itation

— Models

Human processes

— Observations

Infiltration, groundwater,
recharge and runoff

21
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How can we use satellltes for monltorlng |rr|gat|on’>

Data Assimilation

Satellite data:

— are able to observe the true state of the Earth
surface (i.e., human processes)

— are superficial measures

— have temporal and spatial gaps

— are characterized by errors and uncertainties

Some of the variables measured by satellite
Sensors:

» Terrestrial Water Storage (TWS)
» soil moisture
* vegetation

* SNow

60

wn

Data coverage:Sentinel 1 IW: V/V

150°E  120°E  90°E 60°E 30°E 0°wW 30°W  60°W  90°W  120°W 150°W  180°W
Number of images

8 16 24 32 40 48 56 64 72 80

Courtesy of S. Modanesi
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Data Assimilation LAND SURFACE MODELS FRAMEWORKS
(i.e., Noah, Noah-MP, CLM, JULES, VIC, CABLE)

Evapotranspiration
Interception

/

itation

/

Courtesy of S. Modanesi

Human processes

Infiltration, groundwater,
recharge and runoff

Land modeling systems:

— are able to predict and simulate physical processes

— are based on the principle of mass and energy
conservation

aquifer baseflow

— are able to provide continuous simulations in space NOAH-MP LSM
and time https://doi.org/10.1016/jadv  https://doi.org/10.1029/
— are characterized by errors, uncertainties (i.e. input watres.2008.01.013 2010JD015139
data) and simplified assumptions

23
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How can we use satellites for monitoring irrigation? 3
[
. . . ©
Data Assimilation S
=
NATUR OBSERVATIONS A
: S
A 2 2
(7]
()
Satellite =
Airborne >
(@]
O
In situ
o
(on
®
MODELS § Can be used to
-imm Evepotranspiration DATA ASSIMILATION | OPHmize:
pA A . | Model forecast | — Model parameters
Human processes | Model predictions o I oy — model forcing
Ko} 4
| — = — model state
> -
g \J/‘i Obse;vation | ie Ba)ilesicm Estimators
Infiltration, groundwater, (2] i uncertainty i B
recharge and runoff ! i i i Time
24
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. remote sensing I/M\D\Py

Review
‘A Review of Irrigation Information Retrievals from Space and
Their Utility for Users

Christian Massari *(, Sara Modanesi 23 ]acopo Dari 140, Alexander Gruber 200, Gabrielle J. M. De Lannoy 207,
Manuela Girotto ° Pene Qumtana-Segun » Michel Le Page 2 Tionel Jarlan 7, Mehrez Zribi 77,

Nadia Ouaadi 730, Mariétte Vreugdenhil o ), Luca Zappa ", Wouter Dongo , Wolfgang Wagner ?0,

Joost Brombacher '’, Henk Pelgrum * Paulme Jaquot 1° Vahld Freeman '!, Espen Volden 12

Diego Fernandez Prieto 12 Angelica Tarpanelli 19, Silvia Barbetta ! and Luca Brocca 100

(Massari et al., 2021, ) 2
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https://doi.org/10.3390/rs13204112

H SATELLiTES Cesa
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HOW MUCH INFORMATION ON IRRIGATION DYNAMICS CAN BE RETRIEVED BY MW
SENSORS (MAINLY SOIL MOISTURE DATA)?

Two approaches based on r
soil moisture aimed at quanti
be presented

26
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MAP) PING THRQUGH Cesa

Expl iting the temporal stablllty concept for irrigation mapping: Also called as «DARI»

CORE IDEA: During the irrigation season, irrigated areas are characterized by higher soil wedsl In laier studies
moisture values with respect to the temporal mean and with respect to rainfed areas. ~

How can this information be translated into statistical features? — The temporal stability theory

Indices derived from the temporal stability theory

0 . Spatial mean at day t

0, Temporal mean

Relative differences: RD= (8,:-0)/0, <—

Temporal anomalies: TA= (8,,¢-6,)/6, <+ > |

(Dari et al., 2021,

Ex. of data set
(Vachaud et al., 1985)
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https://doi.org/10.1016/j.jhydrol.2021.126129

\EBING THROUGH esa

R TR A

Pixels with associated higher values of spatial relative differences and of temporal anomalies likely belong to

Irrigated areas.
The temporal stability indices are used as input in the k-means clustering algorithm, which allows to group n data

points into k clusters on the basis of predefined characteristics.

Indices derived from the
temporal stability theory A A
¢ [
[ o, e
®* o0
L
s U . oy ® NOTIRRIGATED
® ° . ) IRRIGATED
S . *® o0 o« %o ¢ ."-' 0.50 1
Irrigation mapping through .. v’ * e .° -
the k-means algorithm > > 0P o
< 0007 ° BN
~ Y
. C e . . —0.25 4 e o el
Unsupervised classification algorithm
—0.50
—0.75 1
—1.00 T T T T T T T
0 -1.00 -0.75 -0.50 -0.25 0.00 0.25 050 075 100

RD [-]
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SPATIAL RELATIVE DIFFERENCES

How much the soil moisture value of
a pixel differs from the spatial mean
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PING FHRQUGH

TEMPORAL ANOMALIES
How much the soil moisture value of
a pixel differs from its temporal mean
|
m m m -0.60 -0.45 -0.30 -0.15 O,f)o 0.15 030 045 0.60 -0.60 -0.45 —-0.30 -0.15 oi?]o 0.15 030 045 0.60
M ﬁ w W w m __SMAP 1 km (MAY-SEP 2917) SURFEX-ISBA (MAY-SEP 2017)
: | —{42°N
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GROUND TRUTH 2017
SECOND VALIDATION

Irrigated areas
- Forest/natural areas

78% ACCURACY
Result obtained
through remote
sensing soll
moisture only

———141,5°N

PROPOSED MAPS
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S2MP soil moisture N -
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https://thisme.cines.teledetection.fr/map?c=0.7570594,42.4745842,7.05
https://thisme.cines.teledetection.fr/map?c=0.7570594,42.4745842,7.05
https://thisme.cines.teledetection.fr/map?c=0.7570594,42.4745842,7.05
https://doi.org/10.1016/j.advwatres.2022.104130

The S2IM method

The method relies on statistical features of Sentinel-1-
derived (backscatter VV, VH, and VH/VV) and of Sentinel-2-

derived (NDVI) parameters used as an input in a Support

Vector Machine (SVM).

Sentinel-2 Optical Parameters

Sentinel-1 SAR Parameters

i (NDVI_field)
Var(NDVI_field)
u (NDVI_5 km)/p (NDVI_field)

VAR(NDVI_5 km)/VAR(NDVI_field)

p (VV_field)
Var(VV_field)
p (VH_field)
Var(VH_field)
p (VH/VV_field)
u (VV_5 kmy/p (VV_field)
Var(VV_5 km)/Var(VV_field)
p (VH_5 km)/y (VH_field)

Sentinel-2 timeseries

. » | Selected Sentinel-2 metrics |

Shapefile with

- 5 km x 5km buffer around each
irrigated and non

irrigated plots

Selected Sentinel-1 metrics

Sentinel-1 timeseries

—_—
—-— e o e — - —\—
\ Training
Classification SVM with combination of metrics \

|

Validation (OA & Kappa indices)

Irrigation map

Var(VH_5 km)/Var(VH_field)
g (VHVV_5 km)p (VHIVV_field)

Var(VHIVV_5 km)/Var(VHIVV_field)

(Elwan et al., 2022;

\
\
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https://doi.org/10.3390/w14050804

9.

PING THRQUGH

Wy ¥

(1) (2) IRRIGATION
' Po valley, Italy Ebro basin, Spain
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DARI vs S?IM (over France)

(Bazzi et al., 2022; )
95 — 95 —
S2IM outperforms DARI method, especially in -m| o o 5 =
humid conditions Tl i -
Z 701 Z70 i
< 651 Z 65
= 601 ' 601
S 551 55
S 504 50
S?IM requires more input information with A4l pall NEEN SN SNEN NAE NAE
Fes pect to the D ARI mo del O;i;;ons 0$;9m O;:)elauns O;:;’a:’ns ngé\ Orzlt;:;ons 0;:;.‘9“ ();::]asns Og;:larns PQ);(;‘
BN Dari Model 0 Modified Dari Model [0 S'IM BN Dari Model 0 Modified Dari Model 20 S°IM

(a) (b)

The DARI model is more friendly for end-users

gated (%)
BLENESRZNET3NERES

F_score Rain-fed (%)

F_score Irri
8'383’83838&3-}88‘;83

The DARI model is a useful tool for speditive " 3 0 IH |
irrigation mapping applications Orltans Orléans Ortéans_Orléans  PACA “Ortdans OrléansOrtéan

Orléans Orléans Orléans Orléans PACA

2020 2019 2018 2017 2020 2020 019 2018 017 2020
W Dari Model 3 Modified Darl Model = $'IM BN Dari Model [0 Modified Dari Model 23 S'IM
(c) (d)
35

- =W 411 = o1l O

_— Nz mEm |
- mu= A bha Bl € E= E = m am vl


https://doi.org/10.3390/w14091341

l L

T 20 UGH SATELLITE

'ZI'ION QUANTiFIV' LIS

S

cies between satellite
ding, theoretically,

n) and modeled (not
g irrigation) data sets
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SM-based i.

SM-based
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The SM-based inversion approach

v~ The method relies on the inversion of the soil water balance for backward estimating water entering into

- | the soil. Over agricultural areas, the output is the sum of rainfall plus irrigation. Hence, by removing
<~ rainfal rates, it is possible to estimate irrigation amounts.

nz%0 = i() + p(1) - g(1) - s7(t) — e (1) e oy 7 petore .
dt p g . A irrigation WS SAeNe coasretions irrigation
|rr|gat|on A 40
e(t): g A P
g(t) = aS(t)b ST'(t) =0 evapotranspiration " 2 v e 20 __
sr(t): ° 30 £
surface 3 X
s Vo R
Win(t) = nz + g(t) + e(t) 2 20 \‘ ! Y. ‘l B
dt 2 ~ ot o
1 . ” 10 £
E Se. e [ 4 s -
( ) b ;./67 10 s I - e = ﬂ
=i
Win(t) = Z*——=4+aS(t)” + F - S(t) - PET(¢t) ot
g;j;apgei;olation + 0 B 0
W (t) _ p(t) —_ i(t) subsurface runoff 9/1/18 9/3/18 9/5/18 9/7/18 9/9/18
n -
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The SM-based inversion approach

Parameters: a, b, Z*, F

F=FF=1)
Spatially distributed calibration
of a, b, Z* against rainfall, days >
with no rainfall during irrigation
season are masked out.

t 1 1 NO

Spatially distributed
a', b, Z* values

Spatially aggregated
calibration of F against
rainfall+irrigation over test
sites

. YES )
Ff ? ﬁ af, b!, Z*!, FF

Q

F' value

F =F"
Second iteration
and update of a’, b, Z*

+ OTHER POSSIBLE OPTIONS... TO BE EXPLORED IN THE PRACTICAL SESSION #2
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The SM-based inversion approach: Its EVOLUTION

WHAT’S

(5) IRRIGATION
(4) Deepening the "‘ NEXT?
(3) First high-resolution ET role

implementation

Implementation with
(2) proximal gamma-ray

The role of the spectroscopy data
evapotranspiration (ET)

term within the algorithm

1)
SMZ2RAIN can be
adapted to estimate
irrigation as well, not
only rainfall!
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https://doi.org/10.5194/essd-11-1583-2019
https://doi.org/10.5194/essd-11-1583-2019
https://doi.org/10.1002/2014JD021489
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The idea was born after a reviewer
comment on a SM2RAIN paper.

We simulate soil moisture without (blue line) and
with (red line) irrigation. We apply SM2RAIN to
synthetic soil moisture to obtain SM2RAIN-derived
rainfall+irrigation (magenta line), compared with
observed rainfall ( ).

We subtract observed rainfall ( ) from
SM2RAIN-derived rainfall+irrigation (magenta line)
to obtain irrigation (black line), compared with
observed irrigation (grey area).

l L

{RE UGHSATELLITE

o
=

soil moisture [-]
o
E N

o
(N}

{

o

=250

200

150

100

monthly rainfall [mm]

[42]
o

120

100

80 -

monthly irrigation [mm]

Jan08 Apr08  Jul08

60 -
40 -
20 -
0! ! .

Oct08 Jan09 Apr09

I observed === SM2RAIN-derived|

Julo@  Oct09 Jan10 Apri0  Jul10

Oct10  Jan11

esa
oS Sih A

| === N0 irrigation === irﬁgatiqnj
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The potential of the method in
quantifying irrigation was shown

o Limitations due to the coarse
resolution of the considered soil
moisture products were highlighted

25 1 1 1 1 1 1
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[ Newest Lake Boundary
[ ] OMest Lake Boundary

MU L kilometers
01262 0 ™ 100

1 1 1
] [ observed irrigation estimated irrigation from satellite soil moisture

o

Potential of AMSR2-JAXA
soil moisture in detecting
irrigation .

0
Jul12 Oct12 Jan13  Apri3 Jul13 Oct13 Jan14  Apri4 Jul14 Oct14 Jan15  Apr15 Jul15 Oct15

Irrigation [mm]
N w H
o

(Jalilvand et al., 2019;
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The SM based iInversion approach iImplementation W|th hlgh -resolution satellite soil moisture gjiﬁﬁﬁ

— _2011-04-16
Inclusion of the guidelines e , g
provided by the FAO paper
n.56 (Allen et al., 1998) for
modeling crop ET E—

1°E

Almost 7 years of irrigation estimates from space at 1 km L
ipaﬂal f‘eﬁe‘lﬂleﬂ ESTIMATED IRRIGATION [mm/15-days]
2011-01-01 2016-01-01 2017-09-01
_

(Dari et al., 2020; DISPATCH SMOS

DISPATCH SMAP 44

- == 4 1

i

— e Bl b Bl =R 2= K — B WL


https://doi.org/10.3390/rs12162593

The SM based inversion approach iImplementation W|th hlgh -resolution satellite soil moisture

(Dari et al.,

Y
=}

IRRIGATION AMOUNTS
[mm/5-day]
5 8

=
o

Y
=}

IRRIGATION AMOUNTS
[mm/5-day]
5 8

=
o

=}

2022;

201602  2016-04 201606 201608  2016-10  2016-12

2016 02 2016 04 2016 06 2016 08 2016 10 2016 12

‘URGELL o 60 NORTH CATALAN ARAGONESE o
r20 :? % 50 t20
tao 0 o> 40 tao

: 22
MISSING DATA o E Zwao g0
4 QE
teo & E 80
= 0
oo w0 F100
; ‘ 120 0 ; . ; i — : —— 120
2017-02 2017 04 2017*06 2017-08 2016-02 2016 04 2016 06 2016*05 2016-10 2016-12 2017-02 2017-04 2017*06 2017*08
ALGERRI BALAGUER o 60 SOUTH CATALAN ARAGONESE o
t20 E E -~ 50 20
tao 0 2> 40 tao
E =3
t60 E =9 30 60
4 ©QEF
teo T & E 20 80
£ 0
L1100 Z g 100 <
: - . 120 0 ‘ — : . : 120
2017-02 2017-04 2017-06 2017*08 2016-02 2016 04 2016 06 2016 08 2016 10 2016 12 2017-02 2017-04 2017-06 2017-08
IRRIGATION RAINFALL —— FAOS6_PM —— FAO56_H —— FAO56_M —— SMPM —— SMH —— SMM —— ET_M
Multiple ET modeling approaches and sources
Opening the perspective of an algorithm configuration
) forced with remote sensing data only

RAINFALL [mm/5-day]

RAINFALL [mm/5-day]

45

o EH ba Bl

:g == + —-hl*l


https://doi.org/10.1016/j.agwat.2022.107537

|
Y ,%. . " R |y ' s b v i

VIRRIGATI JANTIFICATION T FESATRELLITE —@es

' ' _.‘:.'.I/ :\‘ ‘ -,.I \ : g "“-'. . ... ‘ el .'Q"""
The SM-based inversion approach: first regional-scale high-resolution irrigation products
IRRIGATION
Irrigation products at regional scale over the Ebro basin and the Po valley -I-

* Period: 2016 — 2020 (July)
« Spatial resolution: 1 km

AVAILABLE SOON!

ESTIMATED IRRIGATION 2016-01-01 ESTIMATED IRRIGATION - SEASON 2016

44°N

46°N
43°N

45°N

7°E 8°E 9°E 10°E 11°E 12°E 13°E
40°N

0 50 100 150 200 250 300 350 400

0 10 20 30 40 50
ESTIMATED IRRIGATION [mm/14-day] ESTIMATED IRRIGATION [mm]
TECHNISCHE
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The SM based inversion approach first regional-scale hlgh resolutlon irrigation products

Irrigation products at regional scale over the Murray-Darling river basin
*  Period: 2017 (April) — 2020 (July)
« Spatial resolution: 6 km

ESTIMATED IRRIGATION 2017-04-01

30°S

35°S

140°E 145°E 150°E

0 10 20 30 40 50
ESTIMATED IRRIGATION [mm/14-day]

IRRIGA']'I@NI

AVAILABLE SOON!

Aspire
CYGNSS SOIL MOISTURE
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Original formulation uses satellite and model SM

ne ATION QU}\NTiFl‘-' !

l L

{RE UGHSATELLITE  @vesa

Rainfall

Irrigation

....Surface soil moisture ........... .

(Zaussinger et al., 2019;

The idea behind this approach is: satellite

\' SM observations contain irrigation signal,

while model simulations do not (neither
directly nor indirectly — eg through
assimilation of air temperature).

Based on this, and assuming all terms of
the water balance equations identical, it is
possible to obtain irrigation as the
difference between satellite and model SM

\‘\@c_.}x‘ \\o"\‘ 5'.-%\0“5' d \\0 : 6{\50:;&
d@Sat ; : : -~ é\
: '&:‘””'" P(r) +:1(r).— ET(::) - R(t)-— ASmt
d®m0d SRS SO SRR SO :..
T E—P(l‘)—ET(I‘)—R(f)—A~S‘rf:s.t ............ .......

I(t) = ASM = SMsat - S)\jmod

Courtesy of L. Zappa
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https://doi.org/10.5194/hess-23-897-2019

} v 4B o
M@[\S‘%RE 18
Tested over CONUS using coarse- resolut|on soil m0|sture (a) ) §
By & <l
. . . . . . o i L ml /| / ©
» Spatio-temporal discrepancies depending on satellite SM product considered Vi 4 .-//:;;:rﬁﬁj g’ N
(i.e., ASCAT, SMAP, AMSR2) [_.",‘, - N eF g T :5'
: : \i\ ] , ; 3 0T >
« Spatial and temporal resolutions of SM, as well as wavelength, have an Niin ' / i o
important effect on the accuracy of results ST S LGN ° =
\\\K (.»/ nr\‘ (@)
Q] 2\ >} K 5 U
(b)
P;: —119.875° N, 36.125° E, Py: — 120.125° N, 35.875°F - AMSH2 i
s Pyn - i) i 7 ﬁ/} 40
20 | . h Y I TR ‘// ;\k—\j ;;kv
N t Y | 0:3 ‘/f % ~"4.[‘:-; d T ﬁ ;J’%ﬁ _{} ®
10 |'|Tﬂ } l,'qj "h 4 A\ ChT Y ‘mh. . ._ 0.2 T\g&'_ o : ‘.:..'-“ti_i._-;ﬂ‘ § g
£ ' h TSN - = A IRV ¢ .
§ \\ & o e 10
S A\ Il S N
§ -\ )
E \\ 3’! A .
5 (c)
£ - ASCAT -
. A= . P ;f){
/{ s - Jfﬁl _}/ﬁ{ 4 o
(s = N \)lyl/' ...g/ ".;
< el < ¥, g
\\‘, ;ﬁ o 8 "“,11 / . E
§\§ IS
—— MERRA2Z —— ASCAT —— AMSR2 —— SMAP V5 \\““ \\ 3 \u‘ 0 49
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Towards applications at high spatial resolution

» Pearson’s correlation between satellite SM (high- and coarse- resolution products) and model simulations (with and
without irrigation)

» Coarse-resolution products do not respond to irrigation (in a highly fragmented agricultural region — Northern Germany)

Courtesy of L. Zappa

* need for high-resolution soil moisture observations

0.8

0.6 1

0.4

0.2 1

Pearson R

0.0 A1

_0.2 T T
CGLS-SSM CCl

(Zappa et al., 2022;
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https://doi.org/10.1016/j.jag.2022.102979
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SM-Delta updated for hlgh-resolution soil moisture g
©
» Because of lack of high-res model SM, surrounding pixels are used instead N
-
S
. : >
: : 0
L
| | =
. : O
5 5 ©
2 N
] s
=] £ :
3 R
F 3
£ |
=] :
@ -~
| —>
T

(Zappa et al., 2021,
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https://doi.org/10.3390/rs13091727
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SM Delta updated for high-res soil m0|sture The Ebro basm case study

Pearson’s R between individual pixels and their surroundings

« High correlation during non-irrigation period (left)

» Low correlation during irrigation period, over irrigated districts (center)

Courtesy of L. Zappa

 Difference between the two highlights irrigated area (darker green, right)

1) R (Jan-Apr ; Sept-Dec) 2) R (May-Aug) 3) R difference (1 - 2)

0.30

0.25

0.20

0.15

- 0.10

- 0.05

IRRIGATIéNl " ; 4 G i \/_ 0.00
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Estlmated irrigation at 500 m tested agamst field-scale |rr|gat|on in Germany

» Good correlation of seasonal irrigation water amounts

Lower revisit time of Sentinel-1 leading to:

 challenging detection of irrigation timing

« underestimation of irrigation water volumes

BB1

BB2

350
300 A
250 A
200 A
150 A
100 -

@ % pixel irrigate

Estimated Irrigation [mm]
wm
o

‘ ... ® <50
=50

R=0.75|bias = 8 mm .-~

d 100 +

o

-

Reported Irrigation [mm]

100 200 300

R = 0.73 | bias = -50 mm .-~

. o2°
%::, $

LY

100 200 300
Reported Irrigation [mm]

NS
350 .
R = 0.44 | bias = -98 mm .-
300 - Bt
250 -
200 - A
o
150 -
100 - .v"
e ®
°
50 - |
~ p.!l: ‘:cw
0 100 200 300

Reported Irrigation [mm]

12,600 12,700  12.800 13.000

Surface Soil Moisture [%]
0 25 50 75 100

Courtesy of L. Zappa
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Synthetlc experiment addressing |mpact of spatial temporal resolutlon on accuracy of irrigation estimates §
L o . - @©
* Frequent revisit time (1 day) allows to capture irrigation timing N
-l
« High spatial resolution (i.e. high irrigated fraction) allows to capture amplitude of irrigation water volumes "c;>
e
temporal sampling - irrigated fraction S5
1d-30% 1d-70% S
-~ 30 0.30
= — IRR reference soil moisture — IRR reference soil moisture
£ 25 4 === IRR estimated —— w/irr, 1day-30% - B IRR estimated — wjirr, 1day-70% [ 0.25 %7
S PREC w/ irr, hourly-100% PREC w/ irr, hourly-100% £
£ 201 A ' — whoirr - 0.20 "‘g
1s{ L0.15 £
2 ! g
< 10 ' -0.10 2
§ li =
® 5- [ F0.05 Q
@ n . | . l n ’
E L ‘ ‘ A‘ : A i& A 0.00
3d-30%
—~ 30 0.30
£ IRR reference soil moisture IRR reference soil moisture
E 25 - W IRR estimated —— w/irr, 3days-30% | ™= IRR estimated — w/irr, 3days-70% | 0.25 %
S PREC w/ irr, hourly-100% PREC w/ irr, hourly-100% =
5207 — woirr 1 — woirr - 0.20 "’E
=3 o
§ 15 1 ;I é
Q -
g5y || |
E oL ' ! . | ' ' | |
2016- 07-01 2016-07-15 2016-08-01 2016-08-15 2016-09-01 2016-07-01 2016-07-15 2016-08-01 2016- 08 15 2016-09-01
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42°N

S ‘QEC! In  order to capture irrigation
L (.=~ dynamics, the spatial resolution of
A satellite data should match with the
irrigation  extent.  Similarly, the
irrigation timing can be properly
reproduced if revisit times are less
than or equal to irrigation frequency

41.5°N

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -1.00 -0.75 -0.50 -0.25 0.00 0.25 050 0.75 1.00
[-] (-]

?

L

« The lack of in-situ data: main driver of this research line but, at the same time, one of the main limitations. J‘:J '-
Reference data is needed for calibration and validation purposes! J)
: =’
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How can satellite-derived irrigation products be useful/used’>

Agricultural water management

For each pixel, minimum
value among the seasons
2016, 2017, 2018, 2019.

7°E

50

For each pixel, maximum
value among the seasons
2016, 2017, 2018, 20109.

MIN 2016-2020

REGIONAL MIN/MAX (2016-2020)

MAX 2016- 2020

IRRIGATI@N'

Development of irrigation statistics at
the regional level. In the next future,
longer time series of irrigation
estimates will ease the building of
reliable statistics useful for water
resources managers, e.qg., by
comparing the water needed with the
actual amounts applied.

Final aim of building an

56
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How can satellite-derived irrigation products be useful/used?

* Ingestion in systems providing irrigation advices

Update of systems providing irrigation advices with actual irrigation

amounts

* Ingestion in LSMs

With the aim of assessing the impacts of irrigation 0.4

0.3

SM [m3/m3]

0.2

* Monitoring illegal water withdrawals

0.1

SM CLIMATOLOGY

5,000
4,500

Satellite info 4,000

i 3,500

Irr. advice 3,000
B . 2,500
2,000
1,500
1,000

500

[m3/ha]

FID

1.1 FID3_MEAN

E CLIMATOLOGY

—®— SURFEX/5BA  —%— SUH.FEWISBA_H.’SI'

—8— SURFEXNSBA  —%— SUH.I-'E!;'ISBA_H.’SI'

. With irrigation
_ Without irrigation
g
‘E‘-.z
o
0
FMAM ] ] ASOND FMAM] ] ASOND
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L 2013-05-22

, https://twitter.com/jacopo_dari

@ Qirpi

Hydrology CNR-IRPI website: http://hydrology.irpi.cnr.it/
Hydrology CNR-IRPI: https://twitter.com/Hydrology_IRPI
Hydrology UNIPG: https://twitter.com/HUnipg

Irrigation+ website: https://esairrigationplus.org/
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https://sentinelshare.page.link/zmb9
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