ESA Land Training course '22

©ESA.

Drought monitoring and forecasting

Wouter Dorigo, Wolfgang Preimesberger, Mariette Vreugdenhil

Department of Geodesy and Geoinformation Climate and Environmental Remote Sensing TU

Global water stores and yearly fluxes

What is drought?

 Drought is not a physical variable but an indicator of deviating conditions, and can be expressed in various ways

http://www.bom.gov.au/climate/maps/rainfall/?variable=rainfall&map=totals&period=3month®ion=nat&year=2022&month=03&day=31_____

 Anomalies in precipitation and multi-satellite C3S soil moisture for March 2022

http://www.bom.gov.au/climate/maps/rainfall/

European Drought Observatory

Drought indicators:

- Soil Moisture Anomaly (SMA)
- Standardized Precipitation Index (SPI)
- Anomaly of Vegetation Condition (FAPAR Anomaly)
- > Low-Flow Index (LFI)
- Heat and Cold Wave Index (HCWI)
- **Combined Drought Indicator** (CDI): Integrates information on anomalies of precipitation, soil moisture and satellitemeasured vegetation condition into a single index that is used to monitor both the onset of agricultural drought and its evolution in time and space.

Drought indices

- Drought is commonly expressed as an index, and fed with (Earth) observations
- Indices can be used to measure severity and duration
- Many variations have been developed
 - Standardized Precipitation Index (SPI), using Precipitation only
 - Standardised Precipitation Evapotranspiration Index (SPEI), using
 P and potential ET
 - Palmer Drought Severity Index (PDSI), based on P and T
 - Self-calibrating PDSI
 - > And many more...

Map released: April 28, 2022 Data valid: April 26, 2022

ESA Land Training Course 2022 - Dorigo, Preimesberger, Vreugdenhul - Drought Monitoring

Categorisation depends on index Ranges **Objective Drought** Palmer USGS Standardized Indicator Blends CPC Soil Precipitation (Percentiles) Drought Weekly Moisture Category Description Possible Impacts Severity Streamflow Index (SPI) Model (Percentiles) Index (Percentiles) (PDSI) Going into drought: short-term dryness slowing planting, Abnormally growth of crops or pastures D0 -1.0 to -1.9 21 to 30 21 to 30 -0.5 to -0.7 21 to 30 Coming out of drought: Dry some lingering water deficits pastures or crops not fully recovered Some damage to crops, pastures Moderate · Streams, reservoirs, or wells low, some D1 11 to 20 11 to 20 -0.8 to -1.2 11 to 20 water shortages developing or imminent -2.0 to -2.9 Drought · Voluntary water-use restrictions requested Severe Crop or pasture losses likely D2 6 to 10 -3.0 to -3.9 6 to 10 -1.3 to -1.5 6 to 10 Water shortages common Drought Water restrictions imposed Extreme Major crop/pasture losses D3 3 to 5 3 to 5 -1.6 to -1.9 3 to 5 -4.0 to -4.9 · Widespread water shortages or Drought restrictions Exceptional and widespread Exceptional crop/pasture losses **D4** -5.0 or less -2.0 or less 0 to 2 Shortages of water in reservoirs, 0 to 2 0 to 2 Drought streams, and wells creating water emergencies

ESA Land Training Course 2022 - Dorigo, Preimesberger, Vreugdenhil - Drought Monitoring

Drought indices "correct for" differences in climate

Spring precipitation in Austria 2022 in comparison to 1981-2010 in %. 100% equals the long-term average.

ESA Land Training Course 2022 - Dorigo, Preimesberger, Vreugdenhil - Drought Monitoring

SPI fits actual, long-term precipitation record to probability distribution (left), which is then transformed into a normal distribution (right) so that the mean SPI for the location and desired period is zero and the SPI is expressed by a z-score

- Two basic assumptions
 - > Variability of precipitation is much higher than that of other variables, (e.g., T and ET_{pot})
 - > Precipitation and other variables are stationary (i.e., they have no temporal trend)

Also seasonal differences need to be accounted for

 Individual distribution needs to be fitted for each season individually

ttps://www.zamg.ac.at/cms/de/klima/klima-aktuell/klimamonitoring

Standardised Precipitation Index

 Can be computed at multiple time aggregates (1, 2, 3, 12 months etc) representing different process time scales

WIEN

Standardised Precipitation minus Evaporation index

- Climatic water balance (precipitation minus evapotranspiration)
 - > Includes the impact of (rising) temperature

STANDARDIZED PRECIPITATION INDEX (SPI)

Impact of temperature under 2 °C and 4 °C global warming scenario

How severe is a drought?

- Drought duration (D): Number of sonsecutive days with index <0
 Drought severity (S): The accumulation of negative index (e.g. SPI) values preceded and followed by positive SPI values is called severity.
 - Drought intensity (I): The intensity is obtained by dividing the severity to the drought duration

[Cavus and Aksoy, 2020]

SMASI - A drought index for soil moisture

- Z-scores can in principle be computed for any dataset of sufficient length
- Use of multiple satellite missions (e.g., ESA CCI SM) allows for a more robust assessment over longer time periods

Example for Australia, where moisture is strongly driven by El Nino Southern Oscillation (ENSO), as

ESA Land Training Course 2022 - Dorigo, Preimesberger, Vreugdenhil - Drought Monitoring

SMASI - A drought index for soil moisture

Soil Moisture Anomaly Standardised Index shows severity of anomalies

indicated by the Southern Oscillation Index (SOI)

>

Microwave remote sensing for assessing drought impacts on vegetation

Impacts on vegetation

Sequence of drought occurrence and impacts for commonly accepted drought types. All droughts originate from a deficiency of precipitation or meteorological drought but other types of drought and impacts cascade from this deficiency. (Source: National Drought Mitigation Center, University of Nebraska-Lincoln, U.S.A.)

19

A plant's reaction to water stress

[Damn et al. 2018]

Linking moisture to vegetation activity

WIEN

[Miralles et al. 2014]

ESA Land Training Course 2022 - Dorigo, Preimesberger, Vreugdenhil - Drought Monitoring

- Vegetation Optical Depth (VOD) quantifies the attenuation of (microwave) radiation by vegetation.
 - Related to vegetation water content and biomass
 - Signal depends on wavelength
 - > Typically retrieved from L-, C-, X-, and Ku-band
- Retrieval algorithms seek to separate vegetation signal from soil signal, e.g.,
 - TU Wien method for radar observations (See Vreugdenhil LTC22)
 - Land Parameter Retrieval Model (VU/NASA/VanderSat/Planet) for radiometer data

[[]Frappart et al. 2020]

VODCA - The VOD Climate Archive

0.67 0.61 0.55

0.48

0.42

-0.23 -0.16 -0.10

- 1.0 - 0.7 - 8:4 - 8:2

Tree

Long-term, harmonized VOD, derived from multiple radiometer datasets

- Separate VODCA products for C-, X-, Ku-band
- 0.25° spatial sampling
- Daily, 1987 2021
- https://doi.org/10.5281/zenodo.2575599

L-VODCA correlation with LAI

[Moesinger et al. 2020; 10.5194/essd-12-177-202]

Ku-VODCA correlation with LAI

[Moesinger et al. 2020; 10.5194/essd-12-177-202]

Ku-VODCA Trends (1987-2021)

[Moesinger et al., 2020; 10.5194/essd-12-177-202]

ESA Land Training Course 2022 - Dorigo, Preimesberger, Vreugdenhil - Drought Monitoring

VODCA - State of the Climate

C3S European State of the Climate 2021

NOAA/BAMS State of the Climate 2021

Impact of late spring frost on vegetation

SVODI is a long-term (1987 - present), daily, global vegetation condition monitoring dataset combining on C-, X- and Ku-band VOD from multiple sensors

- Improves spatio-temporal sampling
- Uses a probabilistic merging method to deal with the varying instrument noise and sampling density of the data, similar as for SMASI

[Moesinger et al., 2022; 10.5194/bg-2021-360]

ESA Land Training Course 2022 - Dorigo, Preimesberger, Vreugdenhil - Drought Monitoring

Standardised VOD Index

along with Southern Oscillation Index

[Moesinger et al., 2022; 10.5194/bg-2021-360]

WIEN

SVODI and standardized precipitation anomalies for 2010-11 and 2019-12

SVODI

Correlation and temporal shift (in weeks) between SVODI and optical **vegetation indices**:

- Vegetation Condition Index (VNIR)
- Temperature Condition Index (thermal)
- Vegetation Health Index (optical + thermal)

SVODI anomalies usually **follow** those from optical data: Thermal > VNIR > Microwave

Sign of advanced vegetation stress (loss of vegetation water content, and stress in deeper soil layers)

[Moesinger et al., 2022; 10.5194/bg-2021-360]

Correlation and temporal shift (in weeks) between SVODI and ERA5 Soil Moisture:

- 0-7 cm
- 7-28 cm
- 28-100 cm

Apart from very dry regions, correlations generally increase with deeper layers

[Moesinger et al., 2022; 10.5194/bg-2021-360]

ESA Land Training Course 2022 - Dorigo, Preimesberger, Vreugdenhil - Drought Monitoring

- VOD profits from long heritage of high frequency (C-, X-, Ku) microwave missions, making it a
 powerful source to study climate (change) impacts on vegetation and plant hydraulics
- **VODCA** allows monitoring temporal and spatial dynamics in above-ground biomass
 - > Ku-, X-, and C-band more sensitive to foliage biomass than L- and P-band
 - > Particularly useful for drylands, agriculture, pastures
- SVODI allows to assess the impact of extreme events and water cycle variability on global vegetation dynamics

Drought impact monitoring and yield forecasting

Senegal 2014 drought

 Impact in multiple indicators

WIEN

 Strongly waterlimited region

Senegal 2014 drought

percentile

percentile

oercentile

percentile

percentile

Severity

10 dekads

10 pekads

dekads

dekads

ESA Land Training Course 2022 - Dorigo, Preimesberger, Vreugdenhil - Drought Monitoring

Drought in the Pannonian Basin

Sheltered, with relatively low levels of precipitation (< 600 mm/year)

High dependency of population on agriculture: 10-20% of population; >70% of area

Mainly rain-fed

TV Drought impacts in the Pannonian Basin

Reported by various media

AGR|Agriculture - FOR|Forests - SOI||Soils - WFR|Wildfires - HYD|Hydrology

[Crocetti et al., 2020]

Climatological conditions and yield loss

- Several drought episodes in the last decades caused significant crop yield losses
 - > 2003, 2007, 2012, 2015, 2017, 2018
- Mean yield loss of 20-30% for all regions
- Further exacerbated by climate change

Earth observation for yield forecasting

' I E N

ESA Land Training Course 2022 - Dorigo, Preimesberger, Vreugdenhil - Drought Monitoring

Can we predict yield losses?

- Numerous EO-based crop yield models have been developed and applied
 - > Process-based
 - Machine learning
- Application over large areas possible using EO data, reanalysis and meteorological observations
- Extreme weather conditions complicate accurate crop yield forecasts

The ARYA crop yield forecasting algorithm: Application to the main wheat exporting countries

```
B. Franch <sup>a,b,*</sup>, E. Vermote <sup>c</sup>, S. Skakun <sup>b,c</sup>, A. Santamaria-Artigas <sup>b,c</sup>, N. Kalecinski <sup>b,c</sup>, J.-C. Roger <sup>b,c</sup>, I. Becker-Reshef <sup>b</sup>, B. Barker <sup>b</sup>, C. Justice <sup>b</sup>, J.A. Sobrino <sup>a</sup>
```

Towards regional grain yield forecasting with 1 km-resolution EO biophysical products: Strengths and limitations at pan-European level

Raúl López-Lozano^{a,*}, Gregory Duveiller^{a,b}, Lorenzo Seguini^a, Michele Meroni^a, Sara García-Condado^a, Josh Hooker^a, Olivier Leo^a, Bettina Baruth^a

Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices

Anikó Kern^a, Zoltán Barcza^{b,c,d,*}, Hrvoje Marjanović^e, Tamás Árendás^f, Nándor Fodor^f, Péter Bónis^f, Péter Bognár^a, János Lichtenberger^{a,g}

In-season performance of European Union wheat forecasts during extreme impacts

glar, S. Garcia Condado, S. Karetsos, R. Lecerf

Seasonal weather forecasts for crop yield modelling in Europe

Pierre Cantelaube & Jean Statistical modelling of drought-related yield losses using soil moisturevegetation remote sensing and multiscalar indices in the south-eastern Europe

 $\label{eq:verse} \mbox{Vera Potopová}^{a,\star}, \mbox{Miroslav Trnka}^{b,c}, \mbox{Pavel Hamouz}^{a}, \mbox{Josef Soukup}^{a}, \mbox{Tudor Castrave}_{t}^{d}$

Yield estimation and forecasting for winter wheat in Hungary using time series of MODIS data

Péter Bognár^a, Anikó Kern^a, Szilárd Pásztor^a, János Lichtenberger^b, Dávid Koronczay^a and Csaba Ferencz^a

Can we predict yield losses?

- Develop a forecasting system based on random forests:
 - > Wheat, harvested in July
 - > Maize, harvested in September
- 41 NUTS3 regions
 - > 2002-2016
- Assess its skill:
 - > in normal years and
 - > years of severe drought
- Assess the contribution of various drivers:
 - > Per crop type
 - > At different times during the growing

Predictor data

Temperature

- Water availability
 - > Precipitation
 - > Soil moisture
 - > Drought indices
- Crop status: VOD, NDVI, LAI
- Drought indices SPEI and ESI for specific drought information
- Seasonal forecasts of precipitation and temperature
- Detrended anomalies

Dataset S	ource	Spatial Resolution	Temporal Resolution	
Earth Observation				
Soil Moisture	ESA CCI	0.25°	daily	
Soil Water Index	ESA CCI	0.25°	daily	
VOD Ku-Band	VODCA	0.25°	daily	
NDVI	CGLS	0.01°	10-daily	
LAI	CGLS	0.01°	10-daily	
ESI (1 and 3 month	s) MODIS	0.05°	weekly	
Reanalysis				
Temperature	ERA5-Land	0.1°	daily	
Growing Degree				
Days	ERA5-Land	0.1°	monthly	
SPEI (1 and 3				
months)	ERA5	0.25°	monthly	
Seasonal forecasts				
Precipitation	ECMWF	1°	monthly	
Temperature	ECMWF	1°	monthly	
In situ data				
Temperature	E-OBS	0.25°	daily	
Precipitation	E-OBS	0.25°	daily	
Fraction of wet day	s E-OBS	0.25°	monthly	

Random forests

- Crop yield forecasts with lead times up to 4 months before harvest
- Feature importance to assess impact of predictors
- Monthly updated with latest data
- Cross-validation leaving 3 years out in blocked periods

[Bueechi et al., in prep

Skill per NUTS3 region

 For all regions, predicted and observed yields have high correlations 2 months before harvest (NUTS3 and mean of Pannonian basin)

ESA Land Training Course 2022 - Dorigo, Preimesberger, Vreugdenhil - Drought Monitoring

Performance in drought years

May R=0.07

 Highest correlations to predict Pannonian basin mean maize yield the month before harvest (R=0.87)

' I E N

- Model detects negative anomalies in drought years from around 2 months prior to harvest
- 1.5 Jun R=0.0Drought |u| R = 0.59Aug R=0.871.0 yield anomalies [t/ha] -0.0 -0.5 0.5 -1.0A) -1.52002 2008 2012 2016 2004 2006 2010 2014 Year

[Bueechi et al., in prep

Measured yield

Differentiation between NUTS3 regions

- Model is poor in distinguishing crop yields between different NUTS3 regions
 - > Low yearly performance (spatial correlations)
 - High spatial correlations of yields and predictors
 - > Coarse resolution of predictors

	Overall (R)	Drought (R)
Maize Jul	0.51	0.36
Maize Aug	0.67	0.33
Wheat May	0.41	0.47
Wheat Jun	0.47	0.44

Predictor importances - wheat

- Increase in correlation between predictors and wheat yields towards last two months
- Soil moisture little impact in addition to SPEI
- Crop condition most important predictor

[Bueechi et al., in prep

- Large increase in correlation between predictors and maize yields towards last two months
- Surface and root-zone soil moisture have highest correlations in July
- Crop indicators largest skill shortly before harvest

[Bueechi et al., in prep

Relative ´predictor importances

- Large changes of the feature importance from first to last two months
- Wheat

/ I E N

- Temperature main control overall
- Water (SPEI3 and soil moisture) mostly at beginning of growing season
- Maize
 - > Temperature main control in first months
 - > Water main control in last months

- Wheat and maize yield forecasts show reasonable performance from around two months before harvest for interannual variabilities
 - Wheat is mainly dependent on the temperature maize on water availability
 - Soil moisture and crop state provide key information during last two months before harvest
- Crop yield losses in years of severe drought underestimated negative anomalies are correctly early detected
- High spatial autocorrelations make it difficult to distinguish between regions

What else do we need from satellites?

- Improving spatial and temporal resolutions to improve regional model performance; toward fieldscale prediction
 - > Sentinel-1 soil moisture, Sentinel-2 crop variables
- Using novel EO datasets to better capture key variables like temperature and water availability
 - > LSTM temperature, Fluorescence from FLEX
- Dub-daily observations for better capturing of plant response to drought and heat stress?

TU Wien CLIMERS data products and services

- ESA CCI Soil Moisture
 - <u>climate.esa.int/en/odp/</u>
- C3S Soil Moisture
 - · <u>cds.climate.copernicus.eu/</u>
- International Soil Moisture Network
 - ismn.earth
- Vegetation Optical Depth Climate Archive (VODCA)
 - <u>doi.org/10.5281/zenodo.25755990</u>
- SVODI
 - <u>doi.org/10.5281/zenodo.7114654</u>
- VODCA2GPP
 - · doi.org/10.48436/1k7aj-bdz35
- QA4SM
 - <u>qa4sm.eu</u>
- Data Viewer
 - · <u>dataviewer.geo.tuwien.ac.at</u>

Thank you!

climers.geo.tuwien.ac.at

Dorigo, Preimesberger, Vreugdenhil - Drought Monitoring