

11th Advanced Training Course on Land RS

Biophysical variables retrieval and time series smoothing

- Sentinel-2 Surface Reflectance
- Noise and gap-filling: temporal compositing, Smoothing and Gap-filling
- Value-Added Products: Leaf Area Index

Teacher: Francesco Vuolo

with contributions from our team

University of Natural Resources and Life Sciences, Vienna (BOKU)

Department of Landscape, Spatial and Infrastructure Sciences Institute of Geomatics

▬ ੜ !! !! ੜ = ━ + !! !! !! !! !! = :: !! ... !! ... !! ※ !! !! ... !! !!

sentinel-2

- Sentinel-2
 - 10 spectral bands (+3)
 - 10-20 m spatial resolution
 - wide swath width (290 km)
 - high revisit time (~5 days)

PCs: 1-2-3: 30/08/2015

PCs: 1-2-3: 30/08/2015

sa

PCs: 5-6-7: 30/08/2015

Challenge 1: data granularity spatially and temporally fragmented EO data

facilitate the exploitation of multi-temporal and multi-satellite datasets

· e esa

All observations, only 1 of the 2 S-2 missing

(BO<mark>KU</mark>

Equi7Grid European Coverage

BOK

Compatible with other available data cubes (S-1)

·eesa

Challenge 2: Noise and data gaps

(BCKU

18-Apr-2017

· e esa

▬ ੜ ▮! \$\$ ☴ ━ ┿ !! 뜰 ☴ !! !! = ☵ ☵ ━ ◙ ▶ !! ※ != 단! ≍ ▅ ┢ !*!

15-Feb-2018

BOKU

22-Mar-2018

24-Mar-2018

BOKU

08-May-2018

11-May-2018

200.

in.

- - - - - -

Noise and data gaps

BCKU

Noise and data gaps

■ __ ■ ■ = + ■ + ■ = := __ ■ ■ = := := ... ■ ■ ▶ ■ ■ * := := := := !*

Definitions of "smoothing" & "filtering"

26

Sedano et al. (2014)

Smoothing applies in a <u>post hoc</u> sense, where there is a need to optimally interpolate past events in a time series.

Smoothing estimates a state based on data from <u>both</u> previous and later times.

Definitions of "smoothing" & "filtering"

Filtering is relevant in an online learning sense, in which <u>current conditions</u> are to be estimated by the currently available data.

Filtering involves calculating the estimate of a certain state based on a <u>partial sequence</u> of inputs.

▬ ੜ ▮! !! ੜ = ⊷ + !! !! !! !! !! = ** ** ... !! >... !! ** ** !! !! **

• ()

Noise removal & gap filling

A COLUMN FROM

Type of filter	Prominent examples
Harmonic Series, e.g., fast and	Hermance, 2007; Bradley et al., 2007; Roerink et al., 2000
discrete Fourier transform (HS)	Jakubauskas et al., 2001; Moody & Johnson, 2001; McCloy
	& Lucht, 2004
Double logistic (DL)	<i>Beck</i> et al., 2006; <i>Zhang</i> et al., 2003
Asymmetric Gaussian (AG)	Jönsson & Eklundh, 2002; Jönsson & Eklundh, 2004
Savitzky-Golay (SG)	Chen et al., 2004; Joensson & Eklundh, 2004
Wavelets (WL)	<i>Sakamoto</i> et al., 2005; <i>Li & Kafatos</i> , 2000
Weighted least squares windowed	<i>Swets</i> et al., 1999
regression (SWETS)	
Running medians (4253H)	<i>Velleman</i> , 1980
Best Index Slope Extraction (BISE)	Viovy et al., 1992; Lovell & Graetz, 2001
Mean Value Iteration (MVI)	<i>Ma & Veroustraete</i> , 2006

Atzberger & Eilers, 2011

(BOK

■ __ ■ ■ = = + ■ + ■ != __ ■ ■ ■ ■ = # __ ■ ■ ■ |•|

Whittaker smoother (Eilers, 2003)

Smoothing data by striking a balance between fidelity to the data and smoothness of the fitted curve:

- Fidelity of curve is measured by the sum of squares of deviations where yi = observed time series and zi = smoothed time series
- Roughness of data can be expressed with differences, e.g. 1st, 2nd, 3rd
- λ (lambda) is a number chosen by the user
- Find z_i (= smoothed time series) by minimising Q for a given lambda
- Effect of Lambda:
 - \succ the larger λ
 - the stronger the influence of roughness R
 - > the smoother z will be
 - \succ at the cost of the fit of the data getting worse
- No periodicity assumed (e.g., Fourier/ Wavelets)
- Data points can be irregularly spaced
- Only one smoothing parameter

 $Q = S + \lambda \cdot R$

$$S = \sum_{i} (y_{i} - z_{i})^{2}$$
$$R = \sum_{i} ((z_{i} - z_{i-1}) - (z_{i-1} - z_{i-2}))^{2}$$

Time

- Interpolates automatically
- ✓ No boundary effects
- Fast leave-one-out cross validation

(BCK

· e esa

Temporal compositing workflow

No smoothing or filtering

Smoothing and gap-filling workflow

Smoothed and gap-filled NDVI time series – regularly spaced "Every Sunday"

Original data									Gap-filled data											
08-01-2018	06-02-2018	07-02-2018	09-02-2018	11-02-2018	112-02-2018	14-02-2018	22-02-2018	01-03-2018	03-03-2018	250 200	08-01-2018	06-02-2018	07-02-2018	09-02-2018	11-02-2018	12-02-2018	14-02-2018	22-02-2018	01-03-2018	03-03-2018
08-03-2018	18-03-2018	<u>19-03-2018</u>	02-04-2018	08-04-2018	10-04-2018	17-04-2018	18-04-2018	20-04-2018	23-04-2018	100	08-03-2018	18-03-2018	19-03-2018	02-04-2018	08-04-2018	10-04-2018	17-04-2018	18-04-2018	20-04-2018	23-04-2018
05-05-2018	07-05-2018	08-05-2018	10-05-2018	12-05-2018	13-05-2018	17-05-2018	20-05-2018	22-05-2018	25-05-2018 N	0 No data	05-05-2018	07-05-2018	08-05-2018	10-05-2018	12-05-2018	13-05-2018	17-05-2018	20-05-2018	22-05-2018	25-05-2018
06-06-2018	07-06-2018	11-06-2018	14-06-2018	19-06-2018	21-06-2018	22-06-2018	26-06-2018	27-06-2018	29-06-2018		06-06-2018	07-06-2018	11-06-2018	14-06-2018	19-06-2018	21-06-2018	22-06-2018	26-06-2018	27-06-2018	29-06-2018
01-07-2018	02-07-2018	04-07-2018	06-07-2018	07-07-2018	11-07-2018	12-07-2018	16-07-2018	17-07-2018	19-07-2018		01-07-2018	02-07-2018	04-07-2018	06-07-2018	07-07-2018	11-07-2018	12-07-2018	16-07-2018	17-07-2018	19-07-2018
21-07-2018	22-07-2018	24-07-2018	26-07-2018	27-07-2018	29-07-2018	31-07-2018	01-08-2018	03-08-2018	05-08-2018		21-07-2018	22-07-2018	24-07-2018	26-07-2018	27-07-2018	29-07-2018	31-07-2018	01-08-2018	03-08-2018	05-08-2018
06-08-2018	10-08-2018	11-08-2018	15-08-2018	16-08-2018	18-08-2018	20-08-2018	21-08-2018	23-08-2018	25-08-2018		06-08-2018	10-08-2018	11-08-2018	15-08-2018	16-08-2018	18-08-2018	20-08-2018	21-08-2018	23-08-2018	25-08-2018
26-08-2018	30-08-2018	02-09-2018	04-09-2018	05-09-2018	09-09-2018	14-09-2018	19-09-2018	24-09-2018	25-09-2018		26-08-2018	30-08-2018	02-09-2018	04-09-2018	05-09-2018	09-09-2018	14-09-2018	19-09-2018	24-09-2018	25-09-2018
27-09-2018	29-09-2018	30-09-2018	04-10-2018	05-10-2018	07-10-2018	09-10-2018	10-10-2018	12-10-2018	14-10-2018		27-09-2018	29-09-2018	30-09-2018	04-10-2018	05-10-2018	07-10-2018	09-10-2018	10-10-2018	12-10-2018	14-10-2018
15-10-2018	17-10-2018	19-10-2018	20-10-2018	24-10-2018	27-10-2018	16-11-2018	18-11-2018	04-12-2018	11-12-2018		15-10-2018	17-10-2018	19-10-2018	20-10-2018	24-10-2018	27-10-2018	16-11-2018	18-11-2018	04-12-2018	11-12-2018 5 5 5
Origina	Original Sentinel-2 NDVI data, Granule "32UND"								Gap-filled Sentinel-2 NDVI data, Granule "32UND"							0.5 km				

(3)

starting **01-01-2018** - ending **31-12-2018** Cloud cover max **50%**

starting **01-01-2018** - ending **31-12-2018**

•

Gap-filled Sentinel-2 NDVI data, Granule "32UND" starting 01-01-2018 - ending 31-12-2018

─ __ ₽₽ \$\$ <u>_</u> ━ +- ₽₽ __ ₽₽ ₽₽ __ ₩\$ __ ∞ № **№** ₽₽ ₩\$ \$**2** ₽₽ ₩ ₩

Data Cube: Spectro-temporal Features...

· e e sa

entinel-2 Level 2-A processor (2016) @esa

Open Access Technical Note

Data Service Platform for Sentinel-2 Surface Reflectance and Value-Added Products: System Use and Examples

by Francesco Vuolo, Mateusz Żółtak, Claudia Pipitone, Luca Zappa, Hannah Wenng, Markus Immitzer, Marie Weiss, Frederic Baret and Clement Atzberger

Remote Sens. 2016, 8(11), 938; https://doi.org/10.3390/rs8110938

Received: 1 August 2016 / Revised: 12 October 2016 / Accepted: 6 November 2016 / Published: 11 November 2016 Cited by 36 | Viewed by 4346 | PDF Full-text (13665 KB) | HTML Full-text | XML Full-text

Abstract This technical note presents the first Sentinel-2 data service platform for obtaining atmospherically-corrected images and generating the corresponding value-added products for any land surface on Earth. Using the European Space Agency's (ESA) *Sen2Cor* algorithm, the platform processes ESA's Level-1C top-of-atmosphere reflectance to atmospherically-corrected [...] Read more.

(This article belongs to the Special Issue First Experiences with European Sentinel-2 Multi-Spectral Imager (MSI)) ▼ Figures

First data processing infrastructure for Sentinel-2 data

Sentinel-2 Level 2-A processor (2017)

DATA ACCESS

Need a single Sentinel-2A image ?

Use our web-interface after a one-step registration proces

esa

https://s2.boku.eodc.eu

Need bulk Sentinel-2A data access ?

R Get our **sentinel2 R package** on github.com

https://github.com/IVFL-BOKU/sentinel2

Need more flexibility?

Explore our application programming interface (API):

Wiki API https://s2.boku.eodc.eu/wiki/

Sentinel-2 Level 2-A processor (2018)

Define region of interest

For the given period and cloud threshold this corresponds to 251 new granule(s) and consumes 246 out of -267 credit you have.

Out of **251** granule(s) covered by the region **241** are ready and **10** will be added to the processing queue.

User	francesco.vuolo@gmail.com							
Region name								
Start date	01/01/2019							
End date	05/20/2019							
Cloud coverage threshold	10							
albedo								
LAI								
FAPAR								
FCOVER								
gap filling								
	Close							

×

ave

Contents lists available at ScienceDirect

International Journal of Applied Earth Observation and Geoinformation

CrossMark

journal homepage: www.elsevier.com/locate/jag

Smoothing and gap-filling of high resolution multi-spectral time series: Example of Landsat data

Francesco Vuolo*, Wai-Tim Ng, Clement Atzberger

On-demand smoothing and gap-filling

Sentinel-2 Level 2-A processor (2018)

sa

Sentinel-2 Level 2-A processor (2016-2018)

Near real time access **Essential Climate Terrestrial Variables** Richest metadata catalogue Global coverage 1500+ per day Regular processing of EU pre-DIAS example

We serve in near-real-time, on-demand and with a global coverage (currently up to 1500 granules per day) We offer professional access to Sentinel-2 surface reflectance and value-added products tailored for agriculture We perform a precise search for user-defined maximum cloudiness for any region of interest (point or polygon) a can download a single image or perform a bulk data access

PRODUCTS

- Surface Reflectance (SR) and cloud masks
- Leaf Area Index (LAI)
- Fraction of Vegetation Cover (fCover)
- Fraction of Absorbed Photosynthetically Active Radiation (FAPAR
- Broadband hemispiërical-directional reflectance factors,(HDRF)

Need bulk Sentinel-2A data access ?

Get our sentinel2 R package on github.com https://github.com/IVFL-BOKU/sentinel2

Need more flexibility? Explore our application programming interface (API): Wiki API https://s2.boku.eodc.eu/wiki/

We are at BOK

http://arcg.is/2lzda9F Institute of Surveying, Remote Sensing I Land Information (IVFL)

Land Information (IVFL) Peter Jordan Str. 82, 1190 Vienna, Austria

Global coverage

(BCKU

Operational (24/7)

▬ ੜ ▮! !! ੜ = ▬ + !! '! '! !! !! = :: !! !! ... !! !! !! :: !! !! !! !! !!

st of products

Layers	Short name	Source/Model	Packaging	Format	Resolutions Geoloc	ation accura	c Application note
L1C, TOA Reflectance L2A, BOA Reflectance True Color Image Scene classification Aerosol optical thickness (550 nm) Water vapor Quality Indicators for cloud probability Quality Indicators for snow probability Visibility	BXX BXX TCI SCL AOT WVP CLD SWM VIS	Sen2Cor v 2.4	Individual bands of entire tile or a spatial subset	jp2	10,20,60 m 10,20,60 m 20,60 m 10,20,60 m 10,20,60 m 20,60 m 20,60 m 20,60 m 20,60 m	C, TOA Refl.	DN 0-10000, representative of re 0 to 1, R = DN / 10000 Red=B4; Green=B3; Blue=B2; 0- See Sen2Cor documentation for 0-1, AOT = DN / 1000 0.4-5.5 cm, WVP = DN / 1000 0-100 0-100
Customised RGB image	RGB			tif	any resampling possib	ble	
Time series (smoothed and gap-filled)	BXX_TS	BOKU		tif			DN 0-10000, representative of re 0 to 1, SR = DN / 10000
Bio-physical indicators							
Broadband hemispherical-directional reflectance factor Leaf area index Fraction of Vegetation Cover Fraction of Absorbed Photosynthetically Active Radiation Vegetation indices	HDRF LAI FCOVER FAPAR VI	Weighted sum of PROSAIL & Neural Network Raster calculato	f the L2A data	tif	10 m (bands at 20 m are resampled to 10 m)		Valid for all pixels, DN 0-1000 alb Valid for cropland, DN 0-8000 LA Valid for cropland, DN 0-1000 FC Valid for cropland, DN 0-1000 FA A list of pre-defined indices is un
Auxiliary Data							
Digital elevation model	DEM	CGIAR 90 m		jp2	10,20,60 m		Elevation = DN - 10000
Metadata							
L2A processing parameters	GIP_TL.xml	/granule/granule	d/AUX_DATA				
Level QA Tile restantes XML file		م مقمام مطلق مان ام م					

Level 2A Lile metadata XIML file

(BCK

Directly exposed via the data portal and APIs

¥ +

Remote sensing of the Earth surface

- Land surfaces can be characterized by:
 - Categorical variables (e.g., land cover, ...)
 - RS application: land cover and use and change mapping
 - Continuous variables (e.g., leaf area index, albedo, ...)
 - RS application: hydrology, climatic modelling

▬ ੜ ▮! \$\$ = ━ + !! !! !! !! !! = \$# 2 ... !! !! *! ... !! *!

Global Climate Observing System

Home / Essential Climate Variables

Essential Climate Variables

For table version click here What are Essential Climate Variables (ECVs)?

https://gcos.wmo.int/en/essential-climate-variables/

For graphical version click here What are Essential Climate Variables (ECVs)?

Atmosphere

Surface

- <u>Precipitation</u>
- <u>Pressure</u>
- <u>Radiation budget</u>
- <u>Temperature</u>
- <u>Water vapour</u>
- Wind speed and direction

Upper-air

- Earth radiation budget
- <u>Lightning</u>
- <u>Temperature</u>
- <u>Water vapor</u>
- Wind speed and direction

Atmospheric Composition

- <u>Aerosols</u>
- <u>Carbon dioxide, methane and other</u> <u>greenhouse gases</u>
- <u>Clouds</u>
- <u>Ozone</u>
- Precursors for aerosols and ozone

Land

Hydrosphere

- Groundwater
- <u>Lakes</u>
- <u>River discharge</u>

Cryosphere

- <u>Glaciers</u>
- Ice sheets and ice shelves
- <u>Permafrost</u>
- <u>Snow</u>

Biosphere

- Above-ground biomass
- <u>Albedo</u>
- Evaporation from land
- <u>Fire</u>
- <u>Fraction of absorbed photosynthetically</u> <u>active radiation (FAPAR)</u>
- Land cover
- Land surface temperature
- Leaf area index
- <u>Soil carbon</u>
- <u>Soil moisture</u>

Anthroposphere

- Anthropogenic Greenhouse gas fluxes
- Anthropogenic water use

Ocean

Physical

- Ocean surface heat flux
- <u>Sea ice</u>
- <u>Sea level</u>
- <u>Sea state</u>
- <u>Sea surface currents</u>
- <u>Sea surface salinity</u>
- <u>Sea surface stress</u>
- Sea surface temperature
- <u>Subsurface currents</u>
- <u>Subsurface salinity</u>
- <u>Subsurface temperature</u>

Biogeochemical

- Inorganic carbon
- <u>Nitrous oxide</u>
- <u>Nutrients</u>
- Ocean colour
- <u>Oxygen</u>
- <u>Transient tracers</u>

Biological/ecosystems

- Marine habitats
- <u>Plankton</u>

Spectral signature of land surface objects

·eesa

Credit: University of Maryland

1016-711-0

Real

Artificial

BOKU

69

Leaf Area Index measurements

÷

https://www.licor.com/env/support/LAI-2200C/videos/measuring-lai.html

Field observations vs Sentinel-2 LAI

(BO<mark>KU</mark>

· e esa

(BO<mark>ku</mark>

· e esa

 $NDVI = \frac{r_i - r_r}{r_i + r_r}$

$$LAI = 0.158e^{3.51NDV}$$

▬ 二 ▮! ;; 그 ▬ ┿ !! '들 二 !! !! 二 ;; 그 ๛ !! ▶ !! ※ ;; 단 : = = • • •

$$WDVI = r_i - r_r \frac{r_{s_i}}{r_{s_r}}$$

$$LAI = -\frac{1}{\alpha} \ln(1 - \frac{WDVI}{WDVI_{\infty}})$$
 Calibration
required!

Clevers, J.G.P.W. Application of a weighted infrared-red vegetation index for estimating leaf Area Index by Correcting for Soil Moisture. *Remote Sens. Environ* **1989**, *29*, 25–37.

■ _ !! !! _ = + !! !! !! ... !! !! _ !! ... !! ... !! ** !! !! ... !!

PROBLEM: FIND MINIMUM RMSE by changing α

▬ 二 ▮! ;; 드 ▬ ┿ !! '≦ 二 !! !! 二 ;; 그 ∞ (◙ ▶ !! ※ ;; 단 = ≤ ∞ '∞ '*

Iterative optimization

https://towardsdatascience.com/machin e-learning-fundamentals-via-linearregression-41a5d11f5220

 α is a combination of extinction and scattering coefficients.

It describes the rate with which the function runs to its asymptotic value, and WDVI_∞ as the asymptotic limiting value for the WDVI.

 $WDVI_{\infty}$ is the asymptotical value of WDVI for $LAI \rightarrow \infty$

The exponential relationship between WDVI and LAI means that LAI estimates will be less accurate when approximating the asymptotic value of WDVI (WDVI_∞)

Invert the LAI CLAIR model to find alfa. This is written in the form of a function that we can optimise in R. alfa_search <- function(alfa) sqrt(sum((y - ((-log(1-(WDVI/WDVI_inf)))*(1/alfa)))^2)/length(y))</p>

Search the interval from lower to upper for a minimum in the function alfa_search a<-optimise(f = alfa_search,lower = 0.1, upper = 1)</pre>

Soil line slope

*

Model parameters: WDVI _∞

 WDVI_∞ is the asymptotical value of WDVI for $\mathsf{LAI}{\rightarrow}\infty$

PROSPECT+SAILH ("PROSAILH") Model (Jacquemoud & Baret, 1990; Verhoef, 1984)

▬ 二 ▮! !! 二 ▬ + !! !! !! ... !! !! ... !! !! ... !! ... !! ** !! !! ... !!

ESA SNAP Sentinel-2 L2 Biophysical processor

	Variable	Minimum	Maximum	Mode
Canopy	LAI	0.0	15.0	2.0
	ALA (°)	30	80	60
	Hot	0.1	0.5	0.2
Leaf	N	1.20	1.8	1.5(
	Cab (µg.m ⁻²)	20	90	45
	Cdm (g.m-2)	0.0030	0.0110	0.00
	Cw_Rel	0.60	0.85	0.7
	Сbр	0.00	2.00	0.0(
Soil	Bs	0.50	3.50	1.2(

Table 5. Distribution of the input variables of the radiative data base. Truncated Gaussian, log-normal or uniform di mode, the standard deviation (s), and minimum and max variable is presented (Nb_Class).

Source: ATBD_S2ToolBox (esa.int)

ESA SNAP Sentinel-2 Toolbox

	~		
Toolboxes			
Sentine	1-2 10	olbox	

ATBD S2ToolBox (esa.int)

Supported Products

Sentinel-2 L1B, L1C, L2A and L3, Landsat-8, Spot 1 to Spot 7, Spot4 Take5, Spot5 Take5, RapidEye, Deimos

Processors

- Sen2Cor for Atmospheric Correction
- Sen2Three level-3 processor for Spatio-Temporal Synthesis of bottom of atmosphere corrected Sentinel-2 level 2a images
- L2B biophysical processor (LAI, fAPAR, ...) from this ATBD
- Reflectance to Radiance Processor
- Radiometric Indices
 - Vegetation indices : DVI, RVI, PVI, IPVI, WDVI, TNDVI, GNDVI, GEMI, ARVI, NDI45, MTCI, MCARI, REIP, S2REP, IRECI, PSSRa
 - Soil indices : SAVI, TSAVI, MSAVI, MSAVI2, BI, BI2, RI, CI
 - Water indices : NDWI, NDWI2, MNDWI, NDPI, NDTI
- MCI Processor: Maximum Chlorophyll Index by exploiting the height of a measurement over a specific baseline.
- OTB tools: MultivariateAlterationDetector, Pansharpening-bayes, Pansharpening-Imvm, Pansharpening-rcs, Rasterizationimage, Rasterization-manual, Segmentation-cc, Segmentation-meanshift, Segmentation-mprofiles, Segmentation-watershed and SFSTextureExtraction

Thank you for your attention

Universität für Bodenkultur Wien

Francesco Vuolo

& team contribution

francesco.vuolo@boku.ac.at

University of Natural Resources and Life Sciences, Vienna (BOKU) Department of Landscape, Spatial and Infrastructure Sciences Institute of Geomatics

..