11th Advanced Training Course on Land RS

Crop type mapping and crop specific growth monitoring

Diane Heymans, Sophie Bontemps, Pierre Defourny

22/11/2022

Importance of agriculture monitoring

Presentation outline

> Introduction of agriculture monitoring with optical and radar data

- > What is a crop? What is a crop map?
- Crop classification by remote sensing
 - Classification
 - ➤Features extraction
 - ➤Segmentation
 - ➢Post-processing
- Crop specific growth monitoring
 - Phenological stage retrieval
 - ► Agricultural practices monitoring

Sentinels as a game changer, especially for agriculture

· eesa

Sentinels as a game changer, especially for agriculture

10 m

Decametric resolution allowing field monitoring

🚍 🏪 🔜 📭 🚺 🛌 📕 👯 🚼 🕶 📰 🖿 🗰 🕪 🖤 🔳 UCLouvain

esa

•

Classification by remote sensing

Spectral signatures and vegetation indices (optical image)

Vegetation indices - often based on 2 spectral bands (red and IR). Convenient way to resume information

Chlorophyll Green index	NIRnarrow Green + Rededge I
Global Environment Monitoring Vegetation Index	$\begin{array}{l} n \; x \; (1 - 0.25n) \cdot \frac{\text{Red} - 0.125}{1 \cdot \text{Red}} \\ n = \frac{2 \; x \; (\text{NIRnarrow}^2 \cdot \text{Red}^2) + 1.5 \; x \; \text{NIRnarrow} + 0.5 \; x \; \text{Red}}{\text{NIRnarrow} + \text{Red} + 0.5} \end{array}$
Greenness Index	Green Red
Green normalized difference vegetation index	NIRnarrow - Green NIRnarrow + Green
Leaf Anthocyanid Content	Rededge3 Green - Rededge1
Leaf Carotenoid Content	Rededge3 Blue - Rededge1
Leaf Chlorophyll Content	Rededge3 Rededge1
Moisture stress index	SWIR1 NIRnarrow
Normalized Difference of Red-edge and SWIR2	Rededge2 - SWIR2 Rededge2 + SWIR2
Normalized Difference Tillage Index	SWIR1 - SWIR2 SWIR1 + SWIR2
Normalized difference vegetation index	NIRnarrow -Red NIRnarrow+ Red
Red-edge normalized difference vegetation index	NIRnarrow - Rededge 1 NIRnarrow + Rededge 1

Ratio Vegetation Index	RVI	
Vegetation Index Number	VIN	NIR
Transformed Vegetation Index	TVI	NDVI + 0.5
Green Vegetation Index	GVI	(-0.283MSS4 - 0.660MSS5 + 0.577MSS6 + 0.388MSS7
Soil Brightness Index	SBI	(0.332MSS4 + 0.603MSS5 + 0.675MSS6 + 0.262MSS7)
Yellow Vegetation Index	YVI	(-0.899MSS4 + 0.428MSS5 + 0.076MSS6 - 0.041MSS7
Non Such Index	NSI	(-0.016MSS4 + 0.131MSS5 - 0.425MSS6 + 0.882MSS7
Soil Background Line	SBL	(MSS7 – 2.4MSS5)
Differenced Vegetation Index	DVI	(2.4MSS7 – MSS5)
Misra Soil Brightness Index	MSBI	(0.406MSS4 + 0.600MSS5 + 0.645MSS6 + 0.243MSS7)
Misra Green Vegetation Index	MGVI	(-0.386MSS4 - 0.530MSS5 + 0.535MSS6 + 0.532MSS7
Misra Yellow Vegetation Index	MYVI	(0.723MSS4 - 0.597MSS5 + 0.206MSS6 - 0.278MSS7)
Misra Non Such Index	MNSI	(0.404MSS4 - 0.039MSS5 - 0.505MSS6 + 0.762MSS7)
Perpendicular Vegetation Index	PVI	$\sqrt{(\rho_{\rm sol} - \rho_{\rm végé})_R^2 + (\rho_{\rm sol} - \rho_{\rm végé})_{\rm NIR}^2}$
Ashburn Vegetation Index	AVI	(2.0MSS7 – MSS5)
Greenness Above Bare Soil	GRABS	(GVI - 0.09178SBI + 5.58959)
Multi-Temporal Vegetation Index	MTVI	(NDVI(date 2) – NDVI(date 1))
Greenness Vegetation and Soil	GVSB	GVI
Brightness		SBI
Adjusted Soil Brightness Index	ASBI	(2.0 YVI)
Adjusted Green Vegetation Index	AGVI	GVI - (1 + 0.018GVI)YVI - NSI/2
Transformed Vegetation Index	TVI	$\frac{(NDVI + 0.5)}{(NDVI + 0.5)}\sqrt{ NDVI + 0.5 }$
Differenced Vegetation Index	DVI	(NIR – R)
Normalized Difference Greenness Index	NDGI	$\frac{(G-R)}{(G+R)}$
Redness Index	RI	$\frac{(\mathbf{R} - \mathbf{G})}{(\mathbf{R} + \mathbf{G})}$
Normalized Difference Vegetation Index	NDVI	$\frac{(NIR - R)}{(NIR + R)}$
Perpendicular Veretation Index	PVI	(NIR - aR - b)
Terpenateaun Tegenaten Insea		$\sqrt{a^2 + 1}$
Soil Adjusted Vegetation Index	SAVI	$\frac{(\text{NIR} - \text{R})}{(\text{NIR} + \text{R} + \text{L})}(1 + \text{L})$
Transformed SAVI	TSAVI	[a(NIR - aR - b)]
		(R + aNIR - ab)
Transformed SAVI	TSAVI	[a(NIR - aR - b)]
		$[R + aNIR - ab + X(1 + a^2)]$
Atmospherically Resistant Vegetation	ARVI	(NIR – RB)
Index		$(NIR + RB) = R - \gamma(B - R)$
Global Environment Monitoring	GEMI	(R - 0.125)
Index	OLIVIT	$GEMI = \eta(1 - 0.25\eta) - \frac{1}{(1 - R)}$
		$\eta = \frac{[2(\text{NIR}^2 - \text{R}^2) + 1.5\text{NIR} + 0.5\text{R}]}{(\text{NIR} + \text{R} + 0.5)}$
Transformed Soil Atmospharically	TEADVI	$[a_{tb}(NIR - a_{tb}RB - b_{tb})]$
Resistant Vegetation Index	ISARVI	$\overline{[\text{RB} + a_{rb}\text{NIR} - a_{rb}b_{rb} + X(1 + a_{rb}^2)]}$
Modified SAVI	MSAVI	$\frac{2NIR + 1 - \sqrt{(2NIR + 1)^2 - 8(NIR - R)}}{2}$
Angular Vegetation Index	AVI	$\tan^{-1}\left\{\frac{\lambda_3-\lambda_2}{\lambda_2}[\operatorname{NIR}-\operatorname{R}]^{-1}\right\} + \tan^{-1}\left\{\frac{\lambda_2-\lambda_1}{\lambda_2}[\operatorname{G}-\operatorname{R}]^{-1}\right\}$

UCLouvain

·eesa

Vegetation indices using Sentinel-2 Red-Edge bands

Spectral indices – temporal profile much affected by atmospheric perturbations eesa

VI temporal signature – time series analysis

JRC Technical Reports, DS/CDP/2018/18

*

Optical vs Synthetic Aperture Radar (SAR)

Backscattering and Coherence

esa

> SAR backscattering (after calibration, sigma nought σ 0)

The **SAR backscattering** is a measure of the outgoing radar signal that the target redirects directly back towards the radar antenna. It is a measure of the reflective strength of a target. The normalised measure of the radar return from a distributed target is called the backscatter coefficient, or **sigma nought** (σ_0), and is defined as per unit area on the ground. In general, due to the high dynamic of the SAR backscatter coefficient, **the amplitude** = sqrt(σ_0) is preferred for visualization purposes.

Definitions of SAR terms can be found in https://earth.esa.int/handbooks/asar/CNTR5-2.html

SAR Coherence

The coherence, which assume values in the range [0.0, 1.0], gives an **estimation of changes in the scene taking into account variation of the phase of the backscattered radar signal:** high coherence (close to 1.0) implies that the scene is steady (e.g. urban areas, bare soil, rocks and so on), low coherence indicates changes between the two acquisition dates.

The coherence is calculated from a couple of SAR images acquired from the same orbit (in order to have significant coherence values the images must be acquired with similar sight of view). The high revisit time of Sentinel-1 mission allows to calculate **short term coherence** from couples of images acquired one **6 days** from the other.

SAR for agriculture monitoring

S1 RGB color composite (blue: mean of the July coherence; green: mean of the March coherence; red: seasonal standard deviation) Mean of the coherence value of March 2017 over Netherlands

Presentation outline

> Introduction of agriculture monitoring with optical and radar data

> What is a crop? What is a crop map?

- Crop classification by remote sensing
 - ≻Classification
 - ➢Features extraction
 - ➤Segmentation
 - ➢Post-processing
- Crop specific growth monitoring
 - Phenological stage retrieval
 - >Agricultural practices monitoring

What is a crop?

A crop is any cultivated plant, fungus, or alga that is harvested for food, clothing, livestock fodder, biofuel, medicine, or other uses

Cultivated land is not, strictly speaking, a land cover class, but rather a **land use class**. But, due to its importance, cropland is integrated in all existing land cover typologies

UCLouvain

─ → 11 **─** 11 11 **─** ₩ **─** 01 ▶ 11 ₩ ₩ **□ ─ →** |+

General LC map, with « crop class »

All existing general land cover map includes one or several crop classes

MODIS LC

0.55

Land Cover Classification Systems – FAO LCCS

- Developed by FAO and UNEP in response to a need for harmonized and standardized collection of land cover data
- A world-wide reference system (LCCS as ISO standard)
- Combine a high level of flexibility (ability to describe land cover features all over the world at any scale or level of detail) with an absolute level of standardization of the class definition between different users
 - Vegetation life form: trees, shrubs, herbaceous vegetation (separated into grasslands and agricultural crops), lichen and mosses, non vegetated
 - >Leaf type (needle-leaf, broad-leaf) and leaf longevity (deciduous, evergreen)
 - Density of life form and leaf characteristics in percent cover
 - >Non-vegetated cover types (bare soil/rock, built up, snow, ice, open water)
 - Terrestrial areas versus aquatic/regularly flooded
 - Artificiality of cover and land use

Source:

- <u>http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1036361/</u>
- http://www.gofcgold.wur.nl/sites/lucc.php

UCLouvain

16

Land Cover Classification Systems - CORINE

- CORINE = Coordination of Information on the Environment: program initiated by the European Commission in 1985
 - Main objective is to provide a homogeneous vector database about land cover => classification system for the EU environment

- Mapping methodology: computer-assisted visual interpretation of satellite images and maps digitalization
- ✓ Scale: 1:100,000
- ✓ Minimum Mapping Unit (MMU): 25 hectares
- Minimum width of linear elements: 100 meters
- ✓ 44 land cover classes

JCLouvain

Examples of CORINE Land Cover Classes

ľ	•	esa

GRID_	CODCLC_COD E	LABEL1	LABEL2	LABEL3	RGB
1	111	Artificial surfaces	Urban fabric	Continuous urban fabric	230-000-077
2	112		Urban fabric	Discontinuous urban fabric	255-000-000
3	121		Industrial; commercial and transport units	Industrial or commercial units	204-077-242
4	122		Industrial; commercial and transport units	Road and rail networks and associated land	204-000-000
5	123		Industrial; commercial and transport units	Port areas	230-204-204
6	124		Industrial; commercial and transport units	Airports	230-204-230
7	131		Mine; dump and construction sites	Mineral extraction sites	166-000-204
8	132		Mine; dump and construction sites	Dump sites	166-077-000
9	133		Mine; dump and construction sites	Construction sites	255-077-255
10	141		Artificial: non-agricultural vegetated areas	Green urban areas	255-166-255
11	142		Artificial: non-agricultural vegetated areas	Sport and leisure facilities	255-230-255
12	211	Agricultural areas	Arable land	Non-irrigated arable land	255-255-168
13	212		Arable land	Permanently irrigated land	255-255-000
14	213		Arable land	Rice fields	220-230-000
15	221		Permanent crops	Vinevards	230-128-000
16	222		Permanent crops	Fruit trees and berry plantations	242-166 077
17	223		Permanent crops	Olive groves	230-166,000
18	231		Pastures	Pastures	230-220-077
19	241		Heterogeneous agricultural areas	Annual crops associated with permanent crops	255-230-166
20	242		Heterogeneous agricultural areas	Complex cultivation patterns	255-230-077
21	242		Heterogeneous agricultural areas	Land principally occupied by agriculture	230-204-077
22	244		Heterogeneous agricultural areas	Agro-forestrv areas	242-204-166
23	311	Forest and semi natural areas	Forests	Broad-leaved forest	128-255-000
24	312		Forests	Coniferous forest	000-166-000
25	313		Forests	Mixed forest	077-255-000
26	321		Scrub and/or herbaceous vegetation associations	Natural grasslands	204-242-077
27	322		Scrub and/or herbaceous vegetation associations	Moors and heathland	166-255-128
28	323		Scrub and/or herbaceous vegetation associations	Sclerophyllous vegetation	166-230-077
29	324		Scrub and/or herbaceous vegetation associations	Transitional woodland-shrub	166-242-000
30	331		Open spaces with little or no vegetation	Beaches; dunes; sands	230-230-230
31	332		Open spaces with little or no vegetation	Bare rocks	204-204-204
32	333		Open spaces with little or no vegetation	Sparsely vegetated areas	204-255-204
33	334		Open spaces with little or no vegetation	Burnt areas	000-000-000
34	335		Open spaces with little or no vegetation	Glaciers and perpetual snow	166-230-204

19

Cropland vs no cropland & crop type maps

Global MODIS 250 m cropland product

Unified Cropland Layer 250m (Waldner et al. 2016)

Mapping = interpretation of radiance (measured by the sensors in watt/m².str) in terms of land cover class, but no direct inference => series of complex processes

Evolution:

- First operational mapping systems based on on-screen interactive visual interpretation of one or two images acquired at specific periods of the year, and mainly relied on expert interpretation
- Progressively supported by image processing tools, which are either interactively run or applied once for all
- Moving from best-image or pair-of-images selection to full-time series processing
- Digital processing tends to reduce labour-intensive data handling to focus interactive human intervention on the most critical steps

💻 💶 💵 📰 🚍 🖛 🕂 💵 🔚 📰 📰 🔡 📰 🏭 🚍 🐜 🚺 🖿 📲 🔛 📰 📾 🛥 🕪 🖉 UCLouvain

·eesa

Presentation outline

- > Introduction of agriculture monitoring with optical and radar data
- > What is a crop? What is a crop map?
- Crop classification by remote sensing
 - Classification
 - Features extraction
 - Segmentation
 - Post-processing
- Crop specific growth monitoring
 - Phenological stage retrieval
 - ► Agricultural practices monitoring

Generic workflow for land classification with EO data

For each step, there are several conceptual and algorithmic choices

Strong influence of the **<u>quality</u> <u>and quantity</u>** of the <u>**remote**</u> <u>**sensing input**</u> and of the <u>**calibration data set**</u>

But in the end, crop mask accuracy varies more from one agricultural region to another rather than from one state-of-the-art method to another (Waldner et al. 2016)

Dashed lines correspond to alternative pathways

Source: Defourny in Delincé

Classification algorithms

- Training concept
 - Unsupervised
 - Without training of the classifier
 - Purely based on statistical parameters of the distribution of the spectral properties in multi-spectral data set
 - Examples: Isodata Clustering, K-Means Clustering
 - Supervised
 - With training of the classifier using training areas
 - Examples: Maximum Likelihood, Minimum Distance, K-Nearest Neighbor, Artificial Neural Network
- Algorithmic base
 - Non-parametric
 - No a priori assumptions on statistical distribution, may be used for many different distributions (more robust)
 - Examples: Artifical Neural Networks, Nearest Neighbors
 - Parametric
 - Assumes specific statistical distribution of the data (e.g. normal distribution)
 - Examples: (Isodata, K-Means, Maximum Likelihood)

Minimum-Distance-to-Mean

Mean point is calculated for pixels of known classes (training data) and unknown pixels are then assigned to the class which is arithmetically closest

- Target classes statistically described by their multivariate probability density functions
- Each density function represents the probability that the spectral pattern of a class falls within a given region in multidimensional spectral space
- The spectral signature of each pixel is then assigned to the class of which it has the highest likelihood of being a member

UCLouvain

- Focuses <u>only on training data at</u> <u>the edge of the class</u> <u>distributions (= support vectors)</u>
- When classes cannot be separated, the training data are projected into a higherdimensional space using kernel techniques for a better fitting of a linear hyperplane
- Repeated for each pair of classes to divide the data into the predefined number of classes
- Optimal rules used to assign all image data into the predefined target classes

Support Vector Machines (SVM)

Trees = output of a sequence of tests

- **Decision Trees (DT)**
- Rules built by recursive partitions to get regions (nodes) increasingly homogeneous with respect to their class variable

- Sequence:
 - Generation of DTs based on training samples
 - Transformation of DTs into another representation of knowledge representation, called production rules (easy to understand and possibly editable by human experts)

- Improved implementation of Decision Trees: ensemblelearning algorithm that combines multiple classifications of the same data to produce higher classification accuracies
- Sequence:
 - Bagging: individual trees are grown from different subsets of training data (random subsampling of the original data for growing each tree)
 - Classification fit to each bootstrap sample
 - Splitting continues until further subdivision no longer reduces the Gini index => finding the best features combination for each class discrimination
 - Most frequent class decided from all trees with a single majority vote

Random Forest (RF)

JCLouvain

• Mimick human brain which is able to process vast quantities of data from a variety of sources

Artificial Intelligence (AI) – Neural Network (NN)

ANN = based on a collection of connected units called "artificial neurons"
acquiring knowledge from its environment through a self-learning process
adaptively constructing linkages between input (EO features) and output (LC classes)

 Training data used to define the rules (network) that produce the best classification results
Rules used to assign features data to the training class of which it has the **highest probability** (fuzzy membership grade) of being a member

Convolutional Neural Network (CNN)

-> https://www.youtube.com/watch?v=FmpDlaiMleA

Supervised classification algorithms - Summary

Computationally intense

#variables per node)

Requires input parameters (#trees and

Random Forests

(Non-parametric)

Does not overfit

Higher accuracy than DTs

Produces unbiased accuracy estimate

RF or SVM tend to be preferred because of their maturity

·eesa

Data mining is more and more used

Not a single best solution for all possible situations

Source: Davidson, 2016

31

Generic workflow for land classification with EO data

UCLouvain

·eesa

Image segmentation

Process of dividing or partitioning the image into "n" regions called segments or objects, which are made by adjacent pixels with similar properties (spectral, spatial and/or temporal)

Watershed algorithm

Considers the image like a topographic map, with the brightness of each point representing its height, and finds the lines that run along the tops of ridges

Region growing algorithm

Neighboring pixels are examined and added to a region if no edges are detected. Iterative process

Other type of algorithm such as neural network

Need a large training dataset

JCLouvain

In Europe : Availability of crop boundaries & crop declaration

LPIS : land parcel identification system

·eesa

Big dataset to handle

Features extraction

Available data

Satellite data

- Raw measurements
- Pre-processed measurements (atm. cor., calibration): spectral reflectances, radar

σ_0

- Combination of bands (e.g. NDVI)
- Phenology index
- •••

Ancillary data:

- Previous land cover map(s)
- Digital Elevation model
- Soil maps

. . .

3 categories

Radiometric features

- Reflectances, spectral indices
- Texture (local statistics)

Temporal features

- Time descriptors (based on time profiles)
- Phenologic indicators: time descriptors based on prior knowledge about vegetation

Object features: extracted after images segmentation

- Radiometric features
- Shape features
- Adjacency features

Example of phenological descriptors which can be extracted from a temporal profile

Post-processing

- Data fusion
- Data filtering: majority voting, selective class-specific filtering, pre-defined transitions, etc.

Accuracy metrics

Overall accuracy is the probability that an individual will be correctly classified by a test

 $\textbf{OA} \quad = \frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$

F1 score - F1 Score is the weighted average of Precision and Recall

Confusion matrix

		Predicted	l condition
	Total population = P + N	Positive (PP)	Negative (PN)
ondition	Positive (P)	True positive (TP)	False negative (FN)
Actual c	Negative (N)	False positive (FP)	True negative (TN)

37

Training data impact on cropland classification

Better performance of RF with field data but still...

Cropland mask, obtained without insitu data but using the ESA CCI Land Cover map to extract training dataset (https://maps.elie.ucl.a c.be/CCI/viewer/)

·eesa

Sen2-Aari

OA from the end of season achieved after 6 months

· e esa

Mid-season crop type maps already useable Better accuracy for end-of-season products (but not always)

				F1 Crop type			OA [%]
		Maize	Straw cereals	Sunflower	Winter Rapeseed	Soyabean	
France	Mid-season	0.84	0.98	0.82	0.90	0.37	86.3
	End-of-season	0.94	0.98	0.96	0.69	0.60	94.1
		Rice	Maize	Sweet Potatoes	Sovabean		
Madagascar	Mid-season	0.66	0.68	0.90	0.34		66.3
	End-of-season	0.69	0.8	0.88	0.34		66.3
		Sorghum	Sesame				
Sudan	Mid-season	0.87	0.20				78.4
	End-of-season	0.91	0.34				84.6
		Winter wheat	Alfalfa	Maize	Sugar beet		
Morocco	Mid-season	0.87	0.67	0.61	0.72		82.2
	End-of-season	0.93	0.60	0.78	0.83		89.3

Random Forest vs Support Vector Machines

RF classifier yields better results for most of the sites

SVM comparable to RF when the number of classes is small

SVM very sensitive to a balanced share of samples between the classes: it has to be parameterized in such a way that all classes are equally represented => majority classes will be under-sampled

National crop type mapping for CAP monitoring

*National dataset	avai	lable	and -	sen4cap			
*457 933 parcels							
*275 crop classe	s (n	o a priori group	oing)				
Grassland and pe "crop" classes	rma	nent crop inclu	ded as				
✤5% calibration / 9	5% ۷	validation					
✤By object-classific	catio	n, RF					
, ,		,					
Corn grain		Carrot (not early)	OA =	= 88,26%			
Winter wheat		Potato (not early)					
Spring barley		Potato (early)	Quite o	nood aiven			
Spring oats		Sugar beet	the larg	e number of			
Triticale		Textile flax	the large				
Spelt		Peas	cro	os (275)			
Cereals and vegetables		Leek					
Winter rape		Ornamental plant					
Meadow		Apple					
Fodder beet		Pear					
Alfalfa		Chicory					
Other fodder		Small holder farming					
		5					

UCLouvain

·eesa

Scenari	Features	Average #
0		
a)	S2 time series + NDVI, NDWI,	~700
	Brightness	~700
b)	S1 time series + ratio VH/VV	~800
c)	S1 temporal features	~200
d)	a) + b)	~1500
e)	a) + c)	~900
f)	a) + b) + c)	~1700

·eesa

📃 🏬 📕 🔚 🔚 🔚 👝 🚺 🍉 📕 💥 🚼 🖬 📰 📟 🕍 🚺 UCLouvain

SMOTE

Scenari	Features	Average #
0		
a)	S2 time series + NDVI, NDWI,	~700
	Brightness	700
b)	S1 time series + ratio VH/VV	~800
c)	S1 temporal features	~200
d)	a) + b)	~1500
e)	a) + c)	~900
f)	a) + b) + c)	~1700

·eesa

Lithuania

)	-	04	Kanna	# of crop classes per F-Score category					
0		UA	карра	0-0.4	0.4 - 0.65	0.65-0.85	0.85 - 1	Total	
a) se	S2 time ries	80	73	17	5	7	4	33	
b) se	S1 time ries + ratio	86	80	9	7	10	6	32	
c) fea	S1 temp. atures	84	78	14	5	8	6	33	
a)	+ b)	87	82	10	7	8	8	33	
a)	+ c)	85	79	12	8	5	8	33	
a) all	+ b) + c) =>	87	82	11	6	8	8	33	

44

Scenari o	Features	Average #
a)	S2 time series + NDVI, NDWI,	~700
	Brightness	700
b)	S1 time series + ratio VH/VV	~800
c)	S1 temporal features	~200
d)	a) + b)	~1500
e)	a) + c)	~900
f)	a) + b) + c)	~1700

TOOL)								
~900)A Kanna	<pre># of crop classes per F-Score category</pre>					
~1700)		κάρρα	0-0.4	0.4 - 0.65	0.65-0.85	0.85 - 1	Total	
	a) S2 time series	94	88	13	13	8	8	42	
	b) S1 time series + ratio	97	92	5	12	12	13	42	
MOTE	c) S1 temp. features	96	92	4	14	10	13	41	
5	a) + b)	97	94	2	15	10	15	42	
	a) + c)	97	93	3	13	11	14	41	
	a) + b) + c) => all	97	94	2	11	14	15	42	

Netherlands

Sen4cap

·eesa

45

Scenari o	Features	Average #		
a)	S2 time series + NDVI, NDWI,	~700		
	Brightness			
b)	S1 time series + ratio VH/VV	~800		
c)	S1 temporal features	~200		
d)	a) + b)	~1500		
e)	a) + c)	~900		
f)	a) + b) + c)	~1700		

1700		OA	Карра	# of crop classes per F-Score category				
				0-0.4	0.4 - 0.65	0.65-0.85	0.85 - 1	Total
SMOTE	a) S2 time series	80	75	10	7	13	5	35
	b) S1 time series + ratio	76	70	12	8	11	4	35
	c) S1 temp. features	75	69	10	8	13	4	35
	a) + b)	82	78	7	9	9	10	35
	a) + c)	82	78	12	6	12	7	37
	a) + b) + c) => all	82	78	11	7	12	7	37

Castilla y Leon

·eesa

Presentation outline

- > Introduction of agriculture monitoring with optical and radar data
- > What is a crop? What is a crop map?
- Crop classification by remote sensing
 - Classification
 - ➢Features extraction
 - ➤Segmentation
 - ➢Post-processing
- Crop specific growth monitoring
 - Phenological stage retrieval
 - >Agricultural practices monitoring

Extraction of crop-specific temporal metrics related to the Cesa crop phenology

An example for rice

Detection of mowing events in permanent grassland

· eesa

Mowing detection example in Spain - Castilla y Leon

NDVI (S2) trend Mowing period truth Mowing period detected

· e esa

Mowing detection example in Spain - Castilla y Leon

·eesa

Harvest date detection based on 5 metrics computed from 3 parallel time series

· e esa NDV1 VV-VH

Harvest detected between 29 July and 4 August

Cover crop in place during the mandatory period and not harvested before its end

e-geos

Tillage detection, from optical NDVI / LAI and SAR backscatter / coherence time series

id: 2291283, orig id = 40201994100006, practice: NA, harvest: 2018-05-07 - 2018-05-13 0.9 ratio (VV[dB]-VH[dB]) 0.8 0.7 0.6 - 0.5 IN 0.4 - 0.3 Coherence VV 0.2 0.1 0.0 018-08

(1) NDVI should remain low throughout this process

(2) The backscatter ratio should remain high/increasingthroughout this process

(3) Coherence should increase during/after harvest, decrease after ploughing/tilling and finally increase again to a stable condition

100+ features & markers per week, per parcel

Monitoring of agricultural practices in smallhoder farming system by 1(0) m time series – fertilization in Mali

Exploiting (deca)metric time series to capture crop development signal including spatial field heterogeneity (sorghum for 3 different fields)

2-m resolution time series capture large field heterogeneity

· eesa

58

Monitoring nitrogen status

Nitrogen Fertilisation Information

 $\mathbf{NNI} = \frac{\mathbf{Na}}{\mathbf{Nc}} \quad \begin{array}{l} \mathsf{Na} = \mathsf{biomass current N content} \\ \mathsf{Nc} = \mathsf{biomass critical N content} \end{array}$

Critical N dilution curve of potato for *cv* Bintje in Belgium (Source : Ben Abdallah *et al.*, 2016)

59

ESA Sen2-Agri / Sen4CAP / Sen4Stat open source toolboxes

·eesa

Thank you

famile f

Any questions ?

TOTAL CONTRACT AND DESCRIPTION