

ROSE-L (Radar Observation System for Europe in L-band)

11th Advances Training Course on Land Remote Sensing 21.11.2022

J. Kubanek, M. Davidson

ICLASSIFIED – For ESA Official Use Only

Radar Observation System for Europe in L-band

Copernicus Expansion missions

- Respond directly and traceably to Copernicus user needs
- Provide new information not yet available through current Sentinel missions (Gaps)
- Provide enhanced information in combination with current Sentinels (Enhanced continuity)

HIGH-PRIORITY CANDIDATE MISSIONS

ROSE-L

L-Band Radar for Arctic and Crysphere Monitoring, Land and Emergency Mapping, Ground Motion, Soil Moisture

CO2M

Carbon Dioxide Monitoring

CRISTAL Polar Ice & Snow Topography Altimeter

CHIME

Hyperspectral Imaging

LSTM

Land Surface Temperature

CIMR

Imaging Microwave Radiometer

Will in particular augment the current and future Copernicus C-band SAR missions (Sentinel-1) by means of a **synergistic acquisition plan**

Radar Observation System for Europe

GENERAL

- Constellation of 2 satellites (PFM & FM2) + options under study
- Consortium led by Thales Alenia Space Italy (TAS-I), involving 29 companies from 15 countries
- Service continuity with Sentinel-1
 FG and NG

COVERAGE

- Coverage of Global Land (excl. Antarctica) and Arctic
- Revisit with 2 satellites :
 - 6 days Global Land
 - 3 days Europe
 - 1 day Arctic
- Repeat cycle of 6 days over Global Land (2 satellites)

PROGRAMMATICS

- Currently reaching end of Phase B2
- Science Plan activities start in 2022
- Launch of PFM expected in 2028
- FM2 delivery expected in 2030

IMAGING

- L-Band 85 MHz ITU allocated band (1.215-1.300 GHz)
- Dual-Pol and Quad-Pol modes
- Wave mode capability
- \Rightarrow Resolution < 50 m2 (Dual-Pol)
- ✤ NESZ < -28 dB</p>
- ✤ DTAR < -23 dB</p>
- ✤ Swath width > 250 km

SYSTEM

- Synergic acquisitions with Sentinel-1: co-located swaths and support to convoy configuration
- Low latency
 - 10 min Europe coastal waters
 - 200 min Global
- Enable companion for single-pass Interferometry

ROSE-L Objectives and Services

Biomass and LULC Mapping

Tropical forest conversion to mix of secondary growth and other land uses

Mixed agriculture area (Germany)

Rubber plantation, Vietnam Patchwork forest stands at different ages

Improved Land Use / Land Cover mapping in combination with Sentinel-1, exploiting the complementary sensitivity

REQUIREMENTS

- Revisit (6 days Global, 3 days Europe)
- High resolution
- Enable SP-InSAR capability for forest height

Source: https://ceos.org/document_management/SEO/Data Cube/Laymans SAR Interpretation Guide 2.0.pdf

| 🚬 🕂 🔤 🚛 🚛 🚛 🚛 💶 🚺 📕 🚃 🚝 🚼 🔤 🚳 📔 💳 🕂 🗰 😹 🔤 🔚 🛶 🖓

Next Generation Imaging

Lower NESZ (-26 dB)

will further enhance mapping and characterization of weak scatterers (benefits in soil moisture, oil spills, sea ice mapping, etc...)

E-SAR data for ESA AgriSAR campaign with Sentinel-1 simulation in stripmap and IWS mode. Color coding is RGB: HV-HH-HH. Stripmap resolution is the same as S1-NG, although with higher NESZ (DLR)

E-SAR standard (8 looks) S1 SM [~S1-NG] (4 looks) S1 IWS (4 looks)

Soil Moisture

- **High-resolution Soil Moisture** tracking in a broad range of crops and vegetated land, complementing Sentinel-1 SSM products that are mainly suitable for bare soils and low vegetation areas.
- Information of Soil Moisture up to ~5 **cm depth** that shall be combined with upper 1 cm layer SSM from Sentinel-1

REQUIREMENTS

- Revisit (6 days Global, 3 days Europe)
- High resolution
- Low noise level (NESZ, ambiguities)
- Integration (downscaling) with Scatterometers and L-band Radiometers for temporal revisit and accuracy

Legend

F11_irrigation

sigma nought [dB]

Results from ESA SARSense air- and space- borne campaign. Acquisitions over Selhausen (DE). (left) Change in backscatter observed in C- and L-band for irrigated and non-irrigated area (F11), but also range dependent. (Right) Scatter plots between soil moisture and backscattering signal from co- and cross-polarized channels of C- and L-band satellite data. From Mengen et al., 2021, Remote Sensing

-25

-30

-35

20

ROSE-L Mission Design Highlights

ROSE-L will augment Sentinel-1 by means of a synergetic acquisition plan and mission design

Collocation with Sentinel-1

- Same orbit configuration of Sentinel-1.
- Phasing of the orbital plane adjusted to follow the same ground track of Sentinel-1
- Mission design supports option for optimized revisit or convoy with Sentinel-1 (within 1min)

Extensive Global coverage and consistent long-term archive

- Coverage of Global land (except for South pole). ~ 38 min/orbit duty cycle
- Consistent acquisitions through years for long-term coherent data stacks

Performant Imaging

- Low NESZ (-28 dB)
- Dual-pol and Quad-pol capabilities

Free, full and open data policy

Moving towards a **System of Systems concept** and enhanced information products