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Outline of the course

• Introduction to artificial intelligence

• Machine learning from big and complex data 

• A gentle introduction to convolutional neural networks

• Some applications of machine learning in forestry (and 
broader)
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Just what is AI?

AI is the science and 
engineering of making 
intelligent machines, 
especially intelligent 
computer programs 
(Alan Turing)
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Deep Learning
Ability to learn many-layered 
neural networks from vast 
amounts of data

Classification, 
regression Computational 

scientific 
discovery



AI history & early optimism

Start in the 1950s, Dartmouth conference in 1956: Big 
expectations, underestimating the difficulties that lie ahead
• 1958, H. A. Simon and Allen Newell: “… within ten years a digital 

computer will discover and prove an important new 
mathematical theorem.”

• 1965, H. A. Simon: “… machines will be capable, within twenty 
years, of doing any work a man can do.”

• 1967, Marvin Minsky: "Within a generation ... the problem of 
creating 'artificial intelligence' will substantially be solved.”

• 1970, Marvin Minsky: "In from three to eight years we will have a 
machine with the general intelligence of an average human 
being."
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The perceptron: An artificial neuron

• The perceptron can be viewed as an artificial neuron

• Performs binary classification via linear discrimination: The 
basic unit of Artificial Neural Networks (Rosenblatt, 1958)

• Minsky and Papert (1969) show it cannot learn XOR function 5



AI history

• Following the Minsky and Papert paper, the first AI 
winter ensues
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Expert systems

• An expert system is a computer system emulating the 
decision-making ability of a human expert

• Expert systems are designed to solve complex 
problems by reasoning over their knowledge bases, 
represented mainly as if–then rules 

• Knowledge captured from human expert by a 
knowledge engineer, through a process known as 
knowledge acquisition
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Knowledge 
acquisition



Expert Systems Here and Now: 
Decision Support Models

Decision makers +
Experts +
Decision analysts

Decision Modelling

Decision Model

DECISION/EVALUATION

MODEL

DECISION MAKING/
EVALUATING OPTIONS



Decision Support Models: 
Hierarchical Multi-Attribute Models



Marko Bohanec

Qualitative Multi-Attribute Models
as Knowledge-Bases (DEXi)

IF ABS=no AND size=small
THEN safety = bad



The knowledge acquisition 
bottleneck

• To create an expert system, you need a 
knowledge-base. 

• The knowledge needs to go from the 
experts to the computer. 

• Experts notoriously bad at explaining how 
they solve problems 11



Machine Learning to the Rescue

• Input: Table of data

• Output: Models in the form of IF-THEN rules or 
decision trees
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Decision Boundaries

• Linear and nonlinear boundaries
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The multi-layer perceptron & NNs

• While a single perceptron cannot learn XOR, a multi-
layer perceptron can. MLPs can approximate an 
arbitrary non-linear mapping between inputs & outputs  

• Arbitrary depth or width may be needed 
• Note the hidden layers: If only a few, shallow NNs
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Neural Networks 
Decision Boundaries
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Ensemble methods: R. forests
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• Ensembles are collections of models
• Whose predictions are combined to obtain a final p.
• Can have much higher predictive performance



Decision Boundaries for 
Ensembles
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Decision Boundaries Illustrated
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Deep and shallow neural nets: 
Many and few hidden layers
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Deep Neural Networks: Advantages

CNNs are DNNs that include computer vision ideas 
(convolutional filters) and can learn features from images

This is the key to the success of NNs: End-to-end learning
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Deep Neural Networks: Limits

But, neural networks cannot 'explain their thinking‘!
• This is unacceptable in many areas (e.g., medicine)
• This also leaves the needs of scientists, whose very 

enterprise is founded on explanation, fundamentally unmet

Neural networks are data hungry
• They need lots of labeled training data, not easy to get

Neural networks are computationally demanding
• In a recent study, DNN performance: 97% accuracy, 3300 hrs

GPU, competing method 96% accuracy, 36 hrs CPU
• Electricity spent (rough estimate): 1KWh for competitor, 

1 MWh for DNNs 21



There’s more to ML than DNNs!

• Learning from data (inductive learning)
• Unsupervised learning (clustering)
• Supervised learning (predictive modeling)

• Classification 
• Regression

• Learning from data (Data Mining)
• Learning understandable/ explainable models

• Trees & tree ensembles
• Rules & rule ensembles

• Learning neural networks/ Deep learning

• Reinforcement learning
• Computational scientific discovery 22



Explainable AI/ML
• Explaining predictions
• Explaining models
• Very important in medicine (changing therapy for 

Parkinson’s)

• Also very important in science 23



Ensembles: Accuracy/Expl. Trade-off

• Ensembles contain multiple-trees
• Predictions combined for

better accuracy
• Provide feature 

importance estimates
and thus some insight/
interpretation

• E.g., random forests
• Very efficient
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Reinforcement learning

• Agent learning from interaction with the environment
• Performs actions
• Receives feedback/ reinforcement 

• Google’s AlphaGo
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Computational scientific 
discovery: Finding laws in data

• Planets further from the Sun orbit slower, following 
the law 𝑑𝑑3/𝑝𝑝2 = 𝑘𝑘 (Kepler’s third law)

• Where d is the distance from the planet to the Sun, 
and p is period of one revolution; k is a constant

• This law is also followed by the moons of Jupiter
Мoon
Io
Еuropa
Ganimed
Calysto
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Computational scientific 
discovery: Finding laws in data

• Input: Observations of distances between moons and 
Jupiter (d) and periods of their orbits (p)

• Output: Kepler’s third law 
• Process of discovery

• BACON (Langley 1978; Langley et al. 1987)
• Carries out heuristic search through the space of numeric 

terms, looking for constant values and linear relations

• Proceeds from observed variables to constant theoretical term27



There’s more to AI than ML
• Knowledge representation & engineering, Reasoning
• All of the above exemplified, e.g., in decision support
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CROPPING
SYSTEM

ECOLOGYECONOMY

Production
value

Total
costs

QualityYield

Biodiversity Soil
biodiversity Water quality

 
 

 Attribute Scale
 OVERALL excellent; acceptable; regular; poor; unacceptable

ECONOMY excellent; high; medium; low
Production_value excellent; high; medium; low

Yield high; medium; low
Quality excellent; high; medium; low

Total_costs high; medium; low
ECOLOGY high; medium; regular; bad

Biodiversity high; medium; low
Soil_biodiversity high; medium; low
Water_quality excellent; good; regular

 



There’s more to AI than ML

• Reasoning (e.g., theorem proving)
• Planning: Blocks world example
• Initial state
Ontable(A), Ontable(B)

On(D,A), On(C,D)

Clear(C), Clear(B)

Handempty

• Goal state
Ontable(B), Ontable(C)

On(D,A), On(C,D)

Clear(C), Clear(B)

Handempty

• Plan: Sequence of actions to get to goal state
UNSTACK(C,D),PUTDOWN(C),UNSTACK(D,A),STACK(D,B),PICKUP(A),STACK(A,D)29



Natural Language Processing (NLP)
• Syntactic Analysis

• Tokenization: Breaking up text into smaller parts/tokens
• Stop-word removal removes frequently occuring words that 

don’t add any semantic value: I, they, have, like, yours, etc.
• Lemmatization & stemming consist of reducing inflected 

words to their base form to make them easier to analyze
• Part of speech tagging (PoS tagging) labels tokens as verb, 

adverb, adjective, noun, etc. 
• Parsing determines the syntactic structure of text by 

analyzing its words based on an underlying grammar
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Natural Language Processing (NLP)

• Semantic Analysis: focuses on capturing the meaning of 
text. First, it studies the meaning of each individual 
word (lexical semantics). Then, it looks at the 
combination of words and what they mean in context.

• Word sense disambiguation tries to identify in which sense a 
word is being used in a given context.

• Relationship extraction attempts to understand how entities 
(places, persons, organizations) relate to each other in a text.

• Classical approach to NLP: Knowledge-driven (e.g., write 
a grammar for Slovene)

• Currently predominant: Statistical NLP (based on 
corpora of text) 31



NLP Downstream Tasks

• Sentiment Analysis: identifies emotions in text and 
classifies opinions as positive, negative, or neutral

• Machine Translation 
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NLP Downstream Tasks

• Information Extraction 
• Chat-bots

• Topic Classification
33



NLP: The Turing test
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Computer Vision

• How computers can be made to gain high-level 
understanding from digital images or videos

• Typical tasks in computer vision
• Recognition
• Motion analysis
• Scene reconstruction
• Image restoration

• Recognition 
• Object recognition/classification
• Identification
• Detection
• Content-based image retrieval 35



Object recognition/classification

• Typically addressed by deep/convolutional NNs today
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Computer Vision with DNNs

• On one hand, excellent accuracies and applications
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Computer Vision with DNNs

• On the other hand, brittle & vulnerable to attacks
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Computer Vision with DNNs

• Failures on out-of-distribution examples
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Break

• Short break
• Questions welcome!
• Before and after 



Machine Learning from 
Big and Complex Data



Predictive modeling (single-target 
classification and regression)

Descriptive space Target space

Example 1 1 TRUE 0.49 0.69 Yes
Example 2 2 FALSE 0.08 0.07 Yes
Example 3 1 FALSE 0.08 0.07 No
Example 4 2 TRUE 0.49 0.69 Yes
Example 5 3 TRUE 0.49 0.69 No
Example 6 4 FALSE 0.08 0.07 Yes

… … …

Descriptive space Target space

Example 1 1 TRUE 0.49 0.69 0.84
Example 2 2 FALSE 0.08 0.07 0.75
Example 3 1 FALSE 0.08 0.07 0.11
Example 4 2 TRUE 0.49 0.69 0.52
Example 5 3 TRUE 0.49 0.69 0.35
Example 6 4 FALSE 0.08 0.07 0.78

… … …



Big Data: Volume & Velocity
• Large number of columns (high dimensionality)

• Need feature ranking/selection

• Large number of rows (massive data)
• Need efficient data mining methods

• Streaming rows (data streams)
• Need incrementality: Not all data available simultaneously
• Data instances arrive at high velocities, in a specific order and 

their number is potentially arbitrarily large
• The underlying concept (distribution) governing the data can 

change (concept drift)
• We need fast processing (due to the high velocity) 
• The large and potentially infinite number of examples 

demands economical management of available memory 43



Data streams: Regression

Descriptive space Target space

… … …

… … …

Example n 1 TRUE 0.49 0.69 0.45

Example n+1 4 FALSE 0.08 0.07 0.12

Example n+2 6 FALSE 0.08 0.07 1.54
Example n+3 8 TRUE 0.00 1.00 3.12
Example n+4 6 TRUE 0.00 0.00 0.05

Example n+5 1 TRUE 0.49 0.69 0.45



Big Data: Variety -
Structured Input

Example: 
Predicting biodegradability 



Big Data: Variety -
Structured Output

• Example: Hierarchical classification
• Taxonomic classification of diatoms
• From microscopic images
• Taking into account the taxonomy of diatoms

46



Descriptive space Target space

Example 1 1 TRUE 0.49 0.69 0.68 0.60 3.91
Example 2 2 FALSE 0.08 0.07 0.56 0.99 7.59
Example 3 1 FALSE 0.08 0.07 0.10 1.69 7.57
Example 4 2 TRUE 0.49 0.69 0.08 0.77 8.86
Example 5 3 TRUE 0.49 0.69 0.11 3.51 2.50
Example 6 4 FALSE 0.08 0.07 0.43 2.10 8.09

… … … … …

Descriptive space Target space

Example 1 1 TRUE 0.49 0.69 Yes Blue Rain
Example 2 2 FALSE 0.08 0.07 Yes Green Sun
Example 3 1 FALSE 0.08 0.07 Yes Blue Cloudy
Example 4 2 TRUE 0.49 0.69 Yes Green Sun
Example 5 3 TRUE 0.49 0.69 No Blue Sun
Example 6 4 FALSE 0.08 0.07 Yes Red Cloudy

… … … … …

Multi-target prediction

• Classification

• Regression



Weather prediction

• Predicting the outlook (sunny, overcast, rain): STC

• Predicting the temperature (in degrees Celsius): STR

• Predicting the weather: MTP
• Outlook
• Temperature
• Humidity
• Quantity of precipitation …

48



The taxonomy of MTP tasks
Multi-target prediction

• Multi-target regression
• Hierarchical multi-target regression 

• Multi-target classification 
• Multi-label classification

• Hierarchical multi-label classification

Few methods exist that can handle multi-target 
prediction with mixed targets, most focus on MTR/MLC 

49



Multi-Label Classification

• Learning models that simultaneously predict  several 
binary target variables

• Input: A vector of descriptive variables 
• Output: A vector of several binary targets



Multi-Label Classification Example

• A decision tree for multi-label classification



Hierarchical multi-label classification

Descriptive space Target space

Example 1 1 TRUE 0.49 0.69

Example 2 2 FALSE 0.08 0.07

Example 3 1 FALSE 0.08 0.07

Example 4 2 TRUE 0.49 0.69

… … …

1
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A decision tree for HMLC

Taking into account the taxonomy of living organisms
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Semi-supervised learning: 
Classification and regression

Descriptive space Target space

Example 1 1 TRUE 0.49 0.69 Yes
Example 2 2 FALSE 0.08 0.07 ?
Example 3 1 FALSE 0.08 0.07 ?
Example 4 2 TRUE 0.49 0.69 Yes
Example 5 3 TRUE 0.49 0.69 No
Example 6 4 FALSE 0.08 0.07 ?

… … …

Descriptive space Target space

Example 1 1 TRUE 0.49 0.69 0.84
Example 2 2 FALSE 0.08 0.07 ?
Example 3 1 FALSE 0.08 0.07 0.11
Example 4 2 TRUE 0.49 0.69 ?
Example 5 3 TRUE 0.49 0.69 ?
Example 6 4 FALSE 0.08 0.07 0.78

… … …



SOP+SSL Incomplete Annotations

• Some examples have labels, some don’t, some partial
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Descriptive space Target space

Example 1 1 TRUE 0.49 0.69

Example 2 2 FALSE 0.08 0.07 ?
Example 3 1 FALSE 0.08 0.07 ?
Example 4 2 TRUE 0.49 0.69

… … …

1

1/1

1/1/
1

1/1/
2

1/2

1/2/
1

1
1/
11/

1/
1?
1/
1/
1/
2

1/
1/
1/
3

1/
1/
2

1/
21/
2/
1

Descriptive space Target space

Example 1 1 TRUE 0.49 0.69 ? 0.60 3.91
Example 2 2 FALSE 0.08 0.07 0.56 0.99 7.59
Example 3 1 FALSE 0.08 0.07 ? ? ?
Example 4 2 TRUE 0.49 0.69 0.08 0.77 8.86
Example 5 3 TRUE 0.49 0.69 0.11 ? ?
Example 6 4 FALSE 0.08 0.07 0.43 2.10 8.09



ML from Complex Data by 
Top-down induction of PCTs 
(Predictive Clustering Trees)

To construct a tree T from a training set S:
• If the examples in S have low variance,

construct a leaf labeled target(prototype(S))
• Otherwise:

• Select the best attribute A with values v1, …, vn, 
which reduces the most the variance (measured 
according to a given distance function d)

• Partition S into S1, …, Sn according to A
• Recursively construct subtrees T1 to Tn for S1 to Sn
• Result: a tree with root A and subtrees T1, …, Tn
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Learning PCTs

• Recursively partition data set into subsets (clusters) 
with low intra-cluster variance

• Variance = avg. squared distance to prototype

• For the variance, the distance is measured
• In standard clustering, along all dimensions
• In prediction, along a single target dimension
• In predictive clustering, along a structured 

target, e.g., several target dimensions 57



Selecting the best test in a PCT

58

• Select the test that maximizes variance reduction
• Calculated in line 4



Semi-Supervised Learning w. PCTs

• New definition of variance that includes both targets and 
attributes, e.g., for MTR

• 𝑇𝑇 = #target attributes, 𝐷𝐷 = #descriptive attributes

• 𝐸𝐸 = 𝐸𝐸Labeled ∪ 𝐸𝐸Unlabeled

• Variances only calculated for non-missing values 

𝑉𝑉𝑉𝑉𝑉𝑉 𝐸𝐸 =
1

𝑇𝑇 + 𝐷𝐷
⋅ 𝑤𝑤 ⋅�

𝑖𝑖=1

𝑇𝑇

𝑉𝑉𝑉𝑉𝑉𝑉 𝑌𝑌𝑖𝑖 + 1 − 𝑤𝑤 ⋅�
𝑗𝑗=1

𝐷𝐷

𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑗𝑗)



PCTs for ML from Big & Complex D.

• Different tasks of structured output prediction
• MTR
• MLC/HMLC

• Learning from data streams
• Semi-supervised Learning

• Tree ensembles
• Feature ranking
• CLUS SW available at 

http://source.ijs.si/ktclus/clus-public
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A Gentle Introduction to 
Neural Networks



The basic building block of NNs: 
Artificial neuron = Perceptron

• The perceptron can be viewed as an artificial neuron, the 
basic building block of artificial neural networks

• Performs binary classification via linear discrimination
62



The multi-layer perceptron & NNs

• A multi-layer perceptron has 
• An Input layer
• An Output layer 
• And several Hidden layers of neurons

• Can approximate arbitrary non-linear mapping
• Arbitrary depth or width may be needed 
• Note the hidden layers: 

If only a few, shallow NNs

63



Feed-forward NNs & Backpropagation

• Reasoning/making predictions: Feed-forward
• Learning the weights in an ANN: Back-propagation
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Deep neural nets: 
Many hidden layers
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Decision boundaries of DNNs
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Convolutional Neural Nets (CNNs)

• Combine ideas from NNs and computer vision

• Convolutions are filtering/smoothing operations in 
which a kernel/filter is applied to an image

67



CNN Ingredients

• Convolution with filter K=
• Convolution over an RGB (3-channel) image
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CNN ingredients: Pooling, AFs

• Convolution extracts high-level features, e.g., edges
• Like convolution, pooling reduces dimensionality by aggregation

• Contributes to feature learning
• Activation functions: RELU (rectified linear unit), SoftMax

69



CNN Ingredients: Classification

70



• To combat scarcity of labeled 
data, learn in one domain (where 
enough labeled data available), 
then transfer the learned 
knowledge to another

• Fine-tuning pre-trained DNNs
• Cut-off final layers of pre-trained net

• Retrain final layers with labeled data

Transfer Learning with CNNs

71



Transfer Learning with CNNs

• Typicall pre-train on ImageNet, fine-tune on labeled 
sets of satellite images
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Combining CNNs and PCTs

• Use features extracted by the convolutional layers, 
e.g., the input to the classification layers

• Apply the learned CNN, say to a set of multi-labeled 
satellite images, generating features

• From features & labels, learn PCT

73



Break

• Short break
• Questions welcome!
• Before and after 



Applications of Machine 
Learning in Forestry and 
Environmental Sciences



Estimating / Evaluating 
the State of Ecosystems



• 16967 sites
• 40 independent variables

• Climate Variables (annual mean rainfall, temperature, 
evaporation)

• Radiometric Data
• Tree Density Data
• Digital elevation model
• Vegetation Type

• 7 dependent variables (Habitat Hectares scores)
• Large Trees, Tree Canopy Cover, Understorey strata, 

Lack of weeds, Recruitment, Organic Litter, Logs
77

Australia: Remnants of 
indigenous vegetation 



Australia: Remnants of 
indigenous vegetation 
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Estimating the State of Forests 
in Slovenia from RS Data



From satellite images + LIDAR 
to forest height and density

Input: Landsat images, 
Multi-temporal, Multi-spectral

+ LIDAR for a small patch



Predict forest height & density

• For the Karst region in Slovenia



Assessing the state of 
Slovenian forests

• Most important two variables
• Canopy cover/closure: Percentage of bare ground within a 

square covered by the vertical projection of overlaying 
vegetation

• Forest stand height: Relative height of vegetation above bare 
ground

• But also a complete vertical vegetation profile (total 10 vars)

• All the target variables derived from LIDAR data

• All the attributes derived from satellite images
82



Input: LIDAR data – A sample

83

Bu - debeljak

Sm - debeljak

Sm - gošča



Processing the LIDAR data
Calculating 11 target variables from LIDAR data
• Canopy cover/closure

• Percentage of bare ground within a square covered by 
the vertical projection of overlaying vegetation

• Forest stand height
• Relative height of vegetation above bare ground

• Percent of vegetation (higher than 1m)
• Alternative to canopy closure]

• Vertical vegetation profile
• Max. height of vegetation 
• 99% percentile
• 95%, 75%, 50%, 25%, 10%, 5% 84



LIDAR Data: Area of Recording
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Input: Satellite images (LandSat)

• Multi-spectral, multi-temporal

86



Preprocessing LandSat Images

• Each image was segmented at two levels of spatial 
detail (avg. 4ha and 20ha)

• 4 image segment statistics were calculated 
• Max / Min / Avg Reflectance
• Standard deviation of Reflectance

• For each level and each of the five image channels 
(2,3,4,5,7)

• 160  explanatory variables derived for modeling 
(attributed back to individual image pixels) 87



Using MTR ensembles

• CLUS used to learn ensembles of multi-target 
regression trees to predict the 11 targets

88



The final output: 
Maps of forest height and density

• Generated by applying the learned models to 
satellite images of the whole Karst area

89



Predicting the Risk of Fires



Estimating the risk of fire 
in the natural environment

• Develop models to predict fire outbreaks from 
• historical data on fires and 
• explanatory GIS data using data mining methods

• Three models developed for three different regions 
of Slovenia: 

• Kras (Karst) region, 
• Primorska (Coastal) region, and
• Continental Slovenia
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The data

Data on fire outbreaks for the period 2000-2004

Data on influencing factors
• GIS data

• Infrastructure
• Land use
• Relief

• Multi-temporal MODIS data
• Meteorological ALADIN data
• Fire fuels

The spatial unit was 1x1 km2 quadrant
92



Additional data: Fire fuels

For the Kras/Karst region, additional data 
• Properties of the forest stand 

(height, canopy cover, vertical veg. profile)

• Related to fire fuel
• Derived by applying machine-learned models 

to LANDSAT images

• Training data for forest stand properties derived from 
3D (LIDAR) and LANDSAT images, at spatial resolution of 
25m x 25m

• Originally at 25m x 25 m, aggregated to 1 km x 1km 
quadrants 93



Positive and negative examples

• Positive examples - locations where fires occurred 
in the past, along with the date and hour

• Negative examples - represented by an equal 
number of points with random time stamps and 
random locations; at least 15 km away from any 
positive examples detected in ± 3 days of the 
random time stamp chosen. 

• Locations of the positive and negative examples of 
fire occurrence spatially and temporally linked to 
the descriptive data



Machine Learning Setup

• Three datasets for different regions of Slovenia
• Kras: 159 attributes and 1439 examples
• Coastal Slovenia: 129 attributes and 2442 examples
• Continental Slovenia: 129 attributes and 8476 examples 

• Nominal Target attribute that predicts fire outbreak 
(yes/no)

• Several machine learning methods used 
• Logistic regression
• Decision trees
• Tree ensembles (boosting, bagging, random forests)

• Models were validated with 10 fold CV
95



Understandable rules

• For the Karst region
• Railways and human activity important



Municipality level estimates of risk



More detailed estimates of risk



Deployment status

• Included in the GIS system e-GIS UJME about natural 
disasters at the Administration for Civil Protection and 
Rescue

• Available to and used by the following organizations
• Firefighter association
• Administration for civil protection and rescue
• Environment Agency
• Forest Service

• Also accessible to the whole range of users of eGIS-UJME 
(Natural Disasters), incl. municipalities 



Relating the Environment 
and the Biota: From Habitat 
models to Community composition



Environment <-> Biota

• Predict the biota (or specific components of it) 
• At a given site
• From characteristics of the environment at the site
• E.g. predict river water biota from water properties



Habitat modeling

• Model the presence & absence (abundance) of 
each species separately

• Binary Classification (Regression) 102



Predicting species composition

• One model for all the species at once

• Multi-target classification/regression
103



Predicting community structure

• One model for all of the species at once, 
additionally using the taxonomical hierarchy

• Hierarchical multi-label classification 104



Slovenian rivers

• 1.060 samples
• 16 physical and chemical props. 
of water, 491 species
• data collected in 1990-1995
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Slovenian rivers: Habitat models
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Slovenian rivers: Species comp.

• MLC: Multi-label classification tree

107



Slovenian rivers: Community struc.

108



Danish farms: 
Soil Microarthropods

• 1.944 soil samples 
• 137 attributes/agricultural events 

and soil biological parameters
• 35 collembolan species
• data collected 

1989-1993
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Victoria, Australia
Vegetation

• 27.482 sites
• 81 env. attributes
• 3.173 species

110



Community structure: Overall results

111



Relating the Environment 
and the Biota: Predicting the 
functional composition/ traits of biota



Victoria, Australia: Relating env. 
char. to plant trait profiles

New, much more extensive data: Collected 1960-2010, 
53362 sites, more than 1.35 Mio indiv. spec. obs.
Each vascular species, recorded together with % cover

113



Victoria, Australia: Relating env. 
char. to plant trait profiles

Plant photosynthetic type (carbon fixation pathways)
• C3: cool-season-active
• C4: warm-season-active
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Victoria, Australia: Relating env. 
char. to plant trait profiles

Phylogeny via main monocot families  (Poaceae=Grasses, 
Cyperaceae=Sedges; Chenopodiaceae=Goosefoots)
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Victoria, Australia: Relating env. 
char. to plant trait profiles

Phylogeny via three main grass genera
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Victoria, Australia: Relating env. 
char. to plant trait profiles

Stress tolerance: Tolerance to salinity, fire, inundation

117



Multi-label classification for 
Land-use/land-cover



MLC Datasets
Small datasets
1. UC-Merced2100 multilabel

2. AID multilabel
3. Ankara HIS Archive
4. DFC15 multilabel

The BigEarthNet dataset
• Size: 1% and 10%
• Labels: 43 and 19

119

Dataset Examples Train examples Test examples Labels

AID multilabel 3000 2400 600 17

Ankara HIS Archive 216 173 43 29

DFC15 multilabel 3342 2673 669 8

UC-Merced 2100 1600 500 17

Dataset Examples Train examples Test examples Labels

BigEarthNet-b01 5,192 3,934 1,258 19

BigEarthNet-b10 51,928 39,341 12,586 19

BigEarthNet-a01 5,192 3,934 1,258 43

BigEarthNet-a10 51,928 39,341 12,586 43



End-to-End Deep Learning Approach

120

• VGG16: Used as a baseline, 
but also to extract features from the images

• Pre-trained on ImageNet 
(except for BigEarthNet, trained from scratch)

• Fine-tuned on the training set of each dataset



Multi-label classification approach

• Extensive empirical comparative study revealed that
• Tree-ensembles for multi-label classification work by 

far the best

• Here we apply tree ensembles for multi-label 
classification 

• On features are extracted from pre-trained (and fine-
tuned) CNNs, more specifically the VGG-16 
architecture mentioned above
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MLC: Summary of Results

• UC-Merced
• RF for MLC: 0.8041 microF1 / VGG 16: 0.7987

• AID
• RF for MLC: 0.8731 microF1 / VGG 16: 0.84

• DFC-15
• RF for MLC: 0.7865 microF1 / VGG 16: 0.79

• Ankara
• RF for MLC: 0.8048 microF1

• BigEarthNet
• RF for MLC: 0.7502 microF1 / VGG 16: 0.74 
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Hierarchical Multi-label 
Classification (HMLC)

123

• For original BigEarthNet
label set, with 43 labels, the 
labels are taken from the 
CLC nomenclature, which 
also provides the hierarchy

• Three-level hierarchy, all leaf 
labels are at level 3 



HMLC for BigEarthNet – 19 labels
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• The CLC nomenclature can be easily adapted to the new 
set of 19 leaf labels (see below). Not all of the 19 labels 
are at level 3 (10 are at level 2).



Summary

• AI is a very powerful technology
• It is more than just machine learning/DNNs

• Both explainable AI/ML and DNNs have their place 
under the sun, can be also used together

• There are many applications in forestry/env. sciences

• AITLAS Toolbox contains many useful ML methods

125



Thank you!

• For your attention
• Questions welcome!
• Thanks also to the 

AITLAS team
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