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Jena — City of Light: the heritage of Zeiss, Schott and Abbe @esa
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U & https://eo-college.org/pyrosar-a-python-framework-for-large-scale-sar-satellite-data-processing/

HOME COURSES ARTICLES RESOURCES ABOUT

pyroSAR - a Python framework for large-scale SAR
satellite data ﬁrocessing
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Educational Objectives of this Lecture

7 To understand the fundamental differences of optical and radar data

7 To understand advantages of SAR techniques

—7 To understand the limitations of SAR data

—7 To learn how SAR data can be used for biomass estimation

7 To be able to investigate optimal sensor and acquisition parameters for forest cover
monitoring

N

To learn about change detection techniques

N

Introduction to Accuracy Assessment

2 THE EUROPEAN SPACE AGENCY



Active Radar Remote Sensing

A brief history of Microwaves
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What is forest structure? What is biomass?

Stem (> 90%)

Branches (< 10 %)

Forest ¢ Leaves (2-4 %)
Above-greund .L. Agriculture Undergrowth (7)
. 80%
Phytomass (>80%) ‘/’ (approx Ya)
Zoomass (<10 %) Grassland
Below-ground, i.e.

roots (ca. 20 %)

Fig.: Global Biomass (after METTE et al., 3002).

Here we will mainly address living terrestrial above-ground vegetation biomass, in
particular woody blomass.
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Fundamental differences of optical and radar data - 1 Eesa

: . X band L band P band VHF
Austrian PG A=3 Ccm A=27 cm A=70cm A>3 m

Fig. and Tab.: Main scatterers at different frequencies (Image credentials: THUy LE TOAN, Tab from LE TOAN ET AL., 2001).
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Fundamental differences of optical and radar data - 2

Comparison of Landsat 7 and 8 bands with Sentinel-2
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Spectral signatures from bark beetle infested spruce {eesa

Abb.:

Reflektanz [%]

Abgeleitete Spektren flr die 5 Befallskategorien flir 3x3 Pixel. [Courtesy: C. Schmullius, Univ. Jena, unpublished]
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Fundamental differences of optical and radar data Eesa

™~ . .
The main scatterers in a
canopy are those elements
. ) X band L band P band VHF havin the dimension Of

Austrian pine " A=27 cm =70 cm A>3m 8
the order of the

Frequen- | X ¢ L P VHE wavelength used.

cy band

Main Leaves, [ eaves Branches | Branches Trunk
scatterers | Twigs Small & Trunk
branches

Fig. and Tab.: Main scatterers at different frequencies (Image credentials: THUY LE TOAN, Tab from LE TOAN ET AL., 2001).

2 THE EUROPEAN SPACE AGENCY




Small dynamic range
Variable response to water
Variable response to open areas

Can be used as indicator of
environmental effects effecting
the coherence

Medium dynamic range

Stable response to water
Possible to identify agricultural
fields

Higher frame to frame
variations

Different wavelengths for forest cover mapping in Siberia @ esa
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Different wavelengths for forest cover mapping in Siberia @esa

e Small dynamic range
e \Variable response to water
e Variable response to open areas

e (Can be used as indicator of
environmental effects effecting the
coherence

Medium dynamic range

Stable response to water
Possible to identify agricultural
fields

Higher frame to frame variations

\

. * CaCoherence
Higher contrast between forest/non forest
Higher sensitivity to forest volume

Confusion between water and dense forest

Frame to frame variations

Courtesy: SIBERIA Project, Univ. Jena
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Different wavelengths for forest cover mapping in tropics eesa

Fig.: ERS-Tandem intensity image and 1-day repeat-
pass phase coherence image (size 50 km by 100 km)
(Luckman et al., 2000).

2 THE EUROPEAN SPACE AGENCY




Different wavelengths for forest cover mapping in tropics eesa

Fig.: JERS intensity image and 44-day repeat-pass
phase coherence image (size 50 km by 100 km)
(LuckmaN et al., 2000).
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Different wavelengths for forest cover mappin pics eesa

Fig.: JERS intensity image and 132-day repeat-pass
phase coherence image (size 50 km by 100 km)
(Luckman et al., 2000).

2 THE EUROPEAN SPACE AGENC




EXCERPT FROM:

LU TR

",' .
-~ I '5:,."
] ! ,'%:

$ -

Imaging Spectroscopy
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Tree Species Classification

Abstract

01 Forest Remote

Sensing % Mapping tree species is one of the most common tasks in forest remote sensing.
02 Reflectance % Since all green vegetation has similar spectra, tree species and/or age class
Characteristics classification is challenging
03 Model Inversion % Often additional information is used: time series,

structural information from secondary data sources
such as Lidar or Radar, or texture information

04 Classification

% Multi-temporal data is essential for differentiating
between tree species. However, owing to frequent

L)

06 Drought Stress

Lessons learned cloud cover in many regions of the world, it is an
important challenge to collect observations from
References the required phenological stages (Stoffels et al.
2015).
21

HYPER Two classes, not perfectly separated
—DU by a straight line

Buddenbaum et al. 2020
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05 Regression: Mapping continuous forest traits

Abstract

01 Forest Remote

Sensing % While classification assigns each pixel to a category, regression methods flag each

02 Reflectance pixel with a value on a continuous scale.

Characteristics % Most common approaches are (Verrelst et al., 2015, 2019):

03 Model Inversion . . .
¢ Parametric regression (e.g. using a

04 Classification spectral index or PLSR),

_ + Non-parametric regression (e.g. machine
05 Regression

learning)
06 Drought Stress + Physically-based model inversion (e.q. -
. . w
using InFORM to derive chlorophyll 0 -
Lessons learned contents) E |
References + Hybrid regression methods (e.g. using a =}
reflectance model to train a parametric =
regression) ©
22 2 >

HYPER

Buddenbaum et al. 2020
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Further Reading

(1) Hill et al. 2019, https://doi.org/10.1007/s10712-019-09514-2

(2) Malenovsky et al. 2019, https://doi.org/10.1007/s10712-019-09534-y
(3) Verrelst et al. 2019, https://doi.org/10.1007/s10712-018-9478-y
(
(

4) Spruyt 2014, https://www.visiondummy.com/2014/04/curse-dimensionality-affect-classification/
5) Asner et al. 2017, https://doi.org/10.1126/science.aaj1987
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Back to Backscatter Mechanisms - Specular

—~—

A - When a wave reflects off only one target and returns to the instrument this is known as
direct scattering (or "single bounce”). This occurs when the wave hits a target that is at an
orientation such that the wave is returned directly to the radar,

g Global Biomass {after MerTe et al,, 2002),

Skﬂih
\ .
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Backscatter mechanism - Volumetric

——

B - Cases of more than two bounces are known as multiple scattering and occur frequently
in environments such as dense forest canopies between trunks, branches, and twigs.

Fg.. Global Bilomass {after MerTe et al,, 2002},

SAREh
\ .
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Backscatter mechanism — Double Bounce

A B C

N\

0 s " . -~

C - If the wave reflects off two surfaces before returning to the instrument, such as often
arises in urban areas between ground and wall, or in forests between ground and tree
trunks or between trunks and twigs, this is termed “double bounce”.

Fig.. Global Blomass (after MeTTe et al,, 2002).

unah
\ :
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o]

= Radar Retrieval Methods (biomass case)

u Backscatter ]

Relating the
backscatter values to
field biomass

measurements  using
regression analysis

regression

(oo |

Examining the
coherence of two SAR
images collected from
similar viewing
positions with a short
time-lag

I
Conversion from
forest parameter

e.g. forest height
estimates from single
frequency polarimetric-
interferometric SAR
data

Conversion through
allometric height-
biomass relations

indirectly

[after GHASEMI, 2011]
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The Water Cloud Model

) > o o O O
%
The Ground S O
S
= O
v O
A patch of vegetation The Ground Amount of “stuff” (ABG)

FIG.: WOODHOUSE

For applications it can be written in terms of growing stock volume

o 0] —@\/ ~— BV O ground backscatter
O for — Gveg 1 —€ ) + ‘ Oyeg canopy backscatter
\ l / B forest transmissivity coefficient

Unknown
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= The Saturation Problem

P-band HY backscatter (dB)
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Fig.: Regression analysis of
radar backscatter with forest

AGB. P-band HV
backscattering coefficient
plotted against AGB from

experiments conducted at five
different forests. The green
points  with  error bars
represent the mean value and
standard deviation of all points
falling within a biomass bin of
+/- 10 tons/ha. The line is a
regression curve applied to the
full dataset. The corresponding
RMSE in biomass is 51.6
tons/ha and the coefficient of
determination 2 = 0.67
(Credis: LE ToAN, in ESA, 2008).
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Strength of multi-temporal data - Backscatter

Multi-temporal combination of 9 JERS images

320

JERS Backscatter

w
o
o

RMSE: 33 m3/ha
Relative RMSE: 22 %

()
N
o

()
o
o

—
Cn
o

20+

Ground-truth stem volume [m3/ha]

Fig.: Multitemporal data (SANTORO et al., 2006).

0 o0 100 150 200 25g 300 350
Retrieved stem volume [m™/ha]
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Strength of multi-temporal data - Coherence

Multi-temporal combination of 9 ERS coherence images
350 ! ! ! ! : { )

ERS Tandem Coherence

A00F __________________ __________________ __________________ ................. _________
: f : : | RMSE: 10 m3/ha

DEQ b .................. ................. .................. ....... {};/ ................ ................ Relative RMSE: 7 %
200 .................. ............. . .................. x/ ........... .................. .................
| | & ;

ol } ............ TSI o

ol ié# __________________ — |

Ground-truth stem volume [m3/ha]

0 20 100 150 200 25

Re’[rie\fed Stem V0|ume m /ha Fig.: Multitemporal data (SANTORO et al., 2002).
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Wall-to-wall forest cover mapping — the SIBERIA project oesa

Model definition for coherence

1.o[ . . ' ] v | . 0=20
+Paolyqon Size 220 ond 250 _ V}, | | e 20-=30
1 yWv)=y,+(r,—7.)¢€
ot = Ly (W)= 1n+ (0= 7) i . ]
- 0.8
E ~y
Yoo = V15 . ¥
=
0.8 - t) — &0 |E.H_H .
: - Yo =28, +D, 775 Fo ;o
E" {>¢ | \Y % B J}
I 0,4_ <>§ _ _Vi & 40 .,r| -
L1 £ _ ¥ |
5o W o ] W)=y +(a, + (b, ~Dy)-e s /|
= ool ¢ ' [
DZ‘_— N 3 \Y 2':|— : -
_ 7(V) = 7,5 +(0.330 +0.581 - 7, )- & 1221 - o
0.0 1 1 1 1 |
o 100 . 200 300 . 400 5040 0 L - L L‘i ! !
Growing Slock Wolume [(m®/ha) 0.0 0.9 a4 0.6 05 10

v = growing stock volume Coherence 7

7, = coherence at v = 0 m3/ha (non-forest)

¥, = coherence for asymptotic values of v (corresponding to dense forest)

755 = value where the coherence distribution reach 75% of the maximum value (Fig.)
Wagner et al., 2003

V_= characteristic v value where the exponential function has decreased by e!
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In the year 2000: SIBERIA Project

ok st Stesn Veluw weey o
n S TBERIA
Aw o~ Bl T .

7 Nothing as yet global
and accessible as
Above Ground
Biomass

7 Regional - SIBERIA (1
Mio. km? at 50 m,
1998) based on SAR
interferometry
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DRAGON
project

Courtesy ESA : 4
DRAGON Progect ) : 2 B 4 - T h * ' Unclassilied
10, Cartus, M X - - .4 oy o g 20 m*3/ha
\ _artus, N ) _ X g — A - 50 m-3/ ha
Santoro) . ) e \ S50-80 m3/ ha
O 80 m3/ha . - :
nter “ b 35

g “a
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Radar model training with optical product VCF

115°E 120°E 125°E 130°E 135°E

M Unclassified
0-20 m*3/ha
20-50 m~3/ha

B50-80 m~3/ha

M )80 m~3/ha

50°N

No0OS

45°N

NoGt

Coherence

40°N

NoOt

120°E 125°E 130°E
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DRAGON-2 Change Product

Forest Cover (Structure) Change — First Results

12670°€ 127°0'E 128°0'E 129°0'E
=
=
o
w
=
o
o
-
2 Googhe Earth 2004
e
ASAR 0-20 m¥ha 20-50 m¥ha | 5080 mYha >80 mYha -
ERS L2 0
0-20 m¥ha R -
20-50 m¥ha
50-80 mha
> B0 m¥ha
- Proee e Abars Conical EQuad Ared l‘ A | ‘l’ l z
SAREFH;\ © FOREST DRAGON 2: Mid-Term Results of the Europ=an Partners
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Image Classification - 1

Classification:

» Systematic arrangement [of data] in groups or categories according to established criteria

( )
* Method for attaching labels to pixels according to their spectral character (Richards & Jia 2006)

* Automatic categorization of all image pixels into land cover classes (Lillesand & Kiefer 2000)

IMAGE DATASET CLASSIFICATION MAP

(e.g. Five Digital Mumbers per pixel) {intoa priori defined classes) [Thematic representation of classes)

Image classification
(Source: after Lillesand & Kiefer 2000)

= ™| ™| ™ M| M| ™ ™| M| M
i I I~ I I~ | I I )
S I I I

wiREEFEEEREE

= = = = = = = = = =

ol Sl Sl el sf | 7| M

ol ]l Sl ) | MM

e (R e o) [ i ) ) I I ]

2 THE EUROPEAN SPACE AGENCY



https://www.merriam-webster.com/dictionary/classification

Image Classification - 2

* Further differentiation of classification concepts:

Classification

* Pixel: * Object:
e Picture element, smallest geometrical unit * Derived from group of pixels with
of image data set common characteristics and relations
e Point information on spectral characteristics, * Represents a geographical entity
e.g. radar backscatter e Created by segmentation

e Uses spectral statistics, shape, size,
texture, context
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Image Classification -3
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1%}
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Accuracy Assessment

A classification is not complete until its accuracy is assessed.
(Lillesand & Kiefer, 2000)

SAREDU \
Remote Sensing
Education Initiative
CC-BY-SA SAR-EDU \



Assessm

Accuracy Assessment

* Every classification contains errors
* None of the classification method is perfect

* Possible error sources:

* Geometric errors in input data
In case of optical data, un-complete atmospheric correction
Clusters incorrectly labeled after unsupervised classification
Training sites incorrectly labeled before supervised classification
Un-distinguishable classes

CC-BY-SA SAR-EDU

Remote Sensing
Education Initiative



e
Accuracy
Assassm

Accuracy Assessment

e According to Merriam-Webster English Dictionary, accuracy means:
* freedom from mistake or error
e conformity to truth

e Accuracy is determined empirically by selecting a sample of pixels from classified map
and checking them against classes determined from reference data (Richards & Jia
2006)

* Reference data
* Also called “ground truth”
* Are a sample of the physical reality
» Retrieved during field visits, from topographic maps, biotope mappings, orthophotos, etc.
e Can be collected using different sampling schemes

SAREDU \
Remote Sensing
Education Initiative
CC-BY-SA SAR-EDU \


https://www.merriam-webster.com/dictionary/accuracy

T T

Assessm

Accuracy Assessment — Number of Samples

* How many samples do need at least?

Z =2 (2 o [standard deviations] covering 95.4% of the image)

Z%pq _

N = — p = expected percent accuracy
E q=100-p

E = allowable error

22 (85 . 15) If an accuracy of 85% at an error of 5% is exepected,
52 then 204 samples should be taken

SAIEDU\

N = 204 \ maksm,
CC-BY-SA SAR-EDU



Assessm

Accuracy Assessment — Sampling Schemes

 How should the samples be distributed over the study area?

* For this different sampling schemes are available:
e Simple random sampling

Stratified random sampling

Systematic sampling

Systematic non-aligned sampling

One- or two-stage cluster sampling

SAREDU \
Remote Sensing
Education Initiative
CC-BY-SA SAR-EDU \



Accuracy Assessment — Sampling Schemes

Sampling

SAREDU ‘
Remote Sensing
Education Initiative
CC-BY-SA SAR-EDU \



Assessm

Accuracy Assessment — Sampling Schemes

e Simple random sampling
* samples taken at random locations

* each sample unit has equal chance of
being selected

 method my underestimate small but
important areas; very small areas
may be missed completely

Settlement

Grassland

Farmland

Forest

Water

SAREDU \
Remote Sensing
Education Initiative
CC-BY-SA SAR-EDU \



Assessm

Accuracy Assessment — Sampling Schemes

e Stratified random sampling

* requires some prior knowledge
about study area to divide area into
strata

* Minimum number of samples taken
for each strata

e Samples within strata randomly
distributed

Settlement

Grassland

Farmland

Forest

Water

SAREDU \
Remote Sensing
Education Initiative
CC-BY-SA SAR-EDU \



Assessm

Accuracy Assessment — Sampling Schemes

e Systematic sampling

* samples placed at equally spaced
positions

Settlement

Grassland

* major advantage is ease of sampling
uniformly over study area

Farmland

Forest

Water

SAREDU \
Remote Sensing
Education Initiative
CC-BY-SA SAR-EDU \



Assessm

Accuracy Assessment — Sampling Schemes

e Systematic non-aligned sampling

e combines randomness and
stratification

* grid used to guarantee even
distribution of random samples

Settlement

Grassland

Farmland

Forest

Water

SAREDU \
Remote Sensing
Education Initiative
CC-BY-SA SAR-EDU \



Assessm

Accuracy Assessment — Sampling Schemes

* One-stage cluster sampling

* centroids are distributed randomly
and serve as base for nearby samples

* these samples may be taken
randomly or systematically

Settlement

Grassland

Farmland

Forest

Water

SAREDU \
Remote Sensing
Education Initiative
CC-BY-SA SAR-EDU \



Assessm

Accuracy Assessment — Sampling Schemes

e Two-stage cluster sampling

* In this Example

 First stage: Clusters are selected by
systematic protocol

* Second stage: Samples are randomly
selected

 First-stage clusters may also be
distributed using random scheme

* Second-stage samples may also be
taken using a systematic scheme

Settlement

Grassland

Farmland

Forest

Water

SAREDU ‘
Remote Sensing
Education Initiative
CC-BY-SA SAR-EDU \



Accuracy Y
Assassm

Accuracy Assessment — Accuracy of ground truth

e Term truth may be misleading
* Accuracy of ground truth rarely known but is usually assumed to be correct

* But:

* Ground truth is almost never completely correct due to:

» Differences between the time the imagery (input data for classification) was acquired and the time
ground truth data were collected

* |Inconsistencies in assigning classes to ground truth

e Other factors based on human judgment.
(Carlotto 2009)

* If ground truth is assumed to be correct but is not, classification errors are
blamed on the algorithm or the data, wrongly lowering the classification accuracy

(Congalton 1991). SAREDU

Remote Sensing
Education Initiative
CC-BY-SA SAR-EDU \
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Accuracy Assessment — Error Matrix

e Error matrix is a way for
representing accuracy
assessment

Reference Data

Settlement Grassland Farmland Forest Water Row total

Settlement [480 20 0 0 0 500

o Grassland |5 320 25 0 0 350

E:

c Farmland |10 30 780 20 0 340

o

8 |Forest 0 0 10 550 0 560

é Water |0 0 0 0 120 120
Column |495 370 815 570 120 2370
total

Producer's Accuracy User's Accuracy

Settlement 480/495 96,97% Settlemen 480/500 96,00%
Grassland 320/370 86,49% Grassland 320/350 91.43%
Farmland 780/815 95,71% Farmland 780/840 92 86%
Forest 550/570 96,49% Forest 550/560 98,21%
Water 120/120 100,00% Water 120/120 100,00%
{ZlfvmrleraullJ-'u::n:urau:::yr = [480+320+780+550+1200/2370 = 94 94%

CC-BY-SA SAR-EDU

Remote Sensing
Education Initiative
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Accuracy Assessment — Error Matrix

Reference Data

Classification Data

Settlement Grassland Farmland

Correct according to
reference data

Settlement 0
Grassland 35
Farmland 840
Forest 560
Water 120
Column 495 370 570 120 2370
total

Producer’s Accuracy

Settlement 480/495
Grassland 320/370
Farmland 780/815
Forest 550/570
Water 120/120

Overall Accuracy =

96,97%
86,49%
95,71%
96,49%
100,00%

User's Accuracy

Settlemen 480/500
Grassland 320/350
Farmland 780/840
Faorest 550/560
Water 120/120

(480+320+780+550+120)/2370 =

CC-BY-SA SAR-EDU

96,00%
91,43%
92,86%
98,21%
100,00%

94,94%

Remote Sensing
Education Initiative



Assessm

Accuracy Assessment — Error Matrix

Reference Data

Off-diagonals —
misclassified
according to
reference data

Classrication Data

Settlement |480

Settlement Grassland Farmland Forest Water

350

840

560

120

Off-diagonals —
misclassified
according to
reference data

total

570 120

2370

Producer’s Accuracy

Settlement 480/495
Grassland 320/370
Farmland 780/815
Forest 550/570
Water 120/120

Overall Accuracy =

96,97% Settlemen 480/500
£6,49% Grassland 320/350
9571% Farmland 780/840
96,49% Forest 550/560
100,00% Water 120/120

(480+320+780+550+120)/2370 =

CC-BY-SA SAR-EDU

User's Accuracy

96,00%
91,43%
92,86%
98,21%
100,00%

94,94%

Remote Sensing
Education Initiative
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Accuracy Assessment — Overall Accuracy

Overall accuracy = sum of the
diagonals divided by the grand
total (expressed as a percent)

Reference Data
Settlement Grassland Farmland Forest Water Row total

SettlemEQ 500
© Grassland 350
T
(]
= Farmland 840
0
E Forest 560
*=
]
= Water
(W]

Q

Column 495 370 815 570 1ﬁ\ 2370 v
total \\/
Producer’s Accuracy User’s Accuracy
Settlement 480/495 96,97% Settlemen 480/500 96,00%
Grassland 320/370 86,49% Grassland 320/350 91,43%
Farmland 780/815 95,71% Farmland 780/840 92,86%
Forest 550/570 96,49% Forest 550/560 98.21%
Water 120/120 100,00% Water 120/120 100,00%
Overall Accuracy = (480+320+780+550+120)/2370 = 94,94%

CC-BY-SA SAR-EDU

Remote Sensing
Education Initiative
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Accuracy Assessment — Individual Class Accuracy

Individual Class Accuracy is
given by the diagonal value
divided by the row or column
total (expressed as a percent).

Example for class Farmland:
(780/840) * 100 =93.71%
or

(780/815) *100 = 92.86%

CC-BY-SA SAR-EDU

Reference Data
Settlement Grassland Farmland Forest Water Row total

Settlement |480 20 0 0 0 500

© Grassland |5 320 25 0 0 350

1]

O

c |Farmland |10 30 20 0

o

8 |Forest 0 0 10 550 0 560

é water |0 0 0 0 120 120
Column [495 370 570 120 2370
total

Producer’s Accuracy User’s Accuracy

Settlement 480/495 96,87% Settlemen 480/500 96,00%
Grassland 320/370 86,49% Grassland 320/350 91,43%
Farmland 780/815 95,71% Farmland 780/840 92,86%
Forest 550/570 96,49% Forest 550/560 98,21%
Water 120/120 100,00% Water 120/120 100,00%
Overall Accuracy = (480+320+780+550+120)/2370 = 94,94%

Remote Sensing
Education Initiative
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Assessm

Accuracy Assessment — Individual Class Accuracy

Individual Class Accuracy is given by the diagonal value divided by the row or
column total (expressed as a percent)

Example for class Farmland: Why are there two values for

780/840 = 93% .y e

or describing the individual class
accuracy for the class

780/815 = 96%
,Farmland“?

Because there are two types of errors!

Remote Sensing
Education Initiative

CC-BY-SA SAR-EDU
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Accuracy Assessment — Error

* Errors of omission

* sites that were not included and are
now falsely part of other classes

* Example for class “Farmland”:

* 10 pixels from class “Settlement”, 30
pixels from class “Grassland”, and 20
pixels from class “Forest” have been
falsely classified, which actually should
belong to class “Farmland”

Types

Reference Data

Settlement Grassland Farmland Forest Water Row total

Settlement [480 20 0 0 0 500

o Grassland |5 320 25 0 0 350

E:

c Farmland |10 30 780 20 0 &40

o

8 |Forest 0 0 10 550 0 560

é Water |0 0 0 0 120 120
Column |495 370 &15 570 120 2370
total

Producer's Accuracy

Settlement 480/495
Grassland 320/370
Farmland 780/815
Forest 550/570
Water 120/120

Overall Accuracy =

CC-BY-SA SAR-EDU

96,97% Settlemen 480/500
86,49% Grassland 320/350
95,71% Farmland 780/840
96,49% Forest 550/560
100,00% Water 120/120

(480+320+780+550+120)/2370 =

User's Accuracy

96,00%
91,43%
92,86%
98,21%
100,00%

94,94%

Remote Sensing
Education Initiative
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Accuracy Assessment — Error Types

e Errors of commission
e Sites that are included in a class but are
part of other classes
* Example for class “Farmland”:

* Class “Farmland” contains 25 pixels
belonging to class “Grassland” and 10
pixels belonging to class “Forest”

Reference Data

Settlement Grassland] Farmland | Forest Water Row total

Settlement [480 20 0 0 0 500

o Grassland |5 320 25 0 0 350

E:

c Farmland |10 30 780 20 0 &40

o

8 |Forest 0 0 10 550 0 560

é Water |0 0 0 0 120 120
Column |495 370 &15 570 120 2370
total

Producer's Accuracy

Settlement
Grassland
Farmland
Forest
Water

Overall Accuracy =

CC-BY-SA SAR-EDU

480/495
320/370
780/815
550/570
120/120

96,97%
86,49%
895,71%
96,49%
100,00%

User's Accuracy

Settlemen
Grassland
Farmland
Forest
Water

480/500
320/350
780/840
550/560
120/120

(480+320+780+550+120)/2370 =

96,00%
91,43%
92,86%
98,21%
100,00%

94,94%

Remote Sensing
Education Initiative
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Accuracy Assessment — Error Types

* Errors of commission and omission linked with two specific accuracy
measures

* Producer’s Accuracy

* Describes how often are real features on the ground are correctly shown on the
classified map

* |s the probability that a certain land cover of an area on the ground is classified as
such.
* User’s Accuracy

* Describes how often the class on the map will actually be present on the ground
* This is referred to as reliability.

SAREDU \
Remote Sensing
Education Initiative
CC-BY-SA SAR-EDU \
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Accuracy Assessment — Error Types

Reference Data
’ [

° Prod ucer’s ACCU racy for a ClaSS S Settlement Grassland Farmland Forest Water Row total
calculated from the diagonal Setlement[480 20 0 0 0 500
value divided by the column total.  ; |[cussian |5 20 25 0 0 350

1]
(]
{4 ”, = Farmland |10 30 780 20 0 &40
* Example for class “Farmland”: 5
% _ 8 |Forest 0 0 10 550 0 560
(780/815) * 100 =95.71% =
S |water |0 0 0 0 120 120
Column [495 370 &15 570 120 2370
total
Producer’s Accuracy User's Accuracy
Settlement 480/495 96,97% Settlemen 480/500 96,00%
Grassland 320/370 86,49% Grassland 320/350 91,43%
Farmland 780/840  92,86%
Forest 550/570 96,49% Forest 550/560 98,21%
Water 120/120 100,00% Water 120/120 100,00%
Overall Accuracy = (480+320+780+550+120)/2370 = 94,94% \
SAREDU

Remote Sensing
Education Initiative
CC-BY-SA SAR-EDU \
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Accuracy Assessment — Error Types

Refarence Data
’ ]

° Users S ACCU racy for a CIaSS IS Settlement Grassland Farmland Forest Water Row total
calculated from diagonal value Setlement[480 20 0 0 0 500
divided by the row total. g |Grassland |5 320 25 0 0 350

“ ” 8 Farmland |10 30 780 20 0
. c armlan
* Example for class “Farmland”: 5
% _ 8 |Forest 0 0 10 550 0 560
(780/840) * 100 = 92.86% =
é Water |0 0 0 0 120 120
Column [495 370 815 570 120 2370
total
Producer’s Accuracy User's Accuracy
Settlement 480/495 96,97% Settlemen 480/500 96,00%
Grassland 320/370 86,49% Grassland 320/350 91,43%
Farmland  780/815 95,71%
Forest 550/570 96,49% Forest  550/560 98,21%
Water 120/120  100,00% Water 120/120  100,00%
Overall Accuracy = (480+320+780+550+120)/2370 = 94,94% \
SAREDU

Remote Sensing
Education Initiative
CC-BY-SA SAR-EDU \
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Accuracy Assessment — "KHAT"

* Theoretically also a totally random assignment of pixels to classes will result in a
certain percentage of correct values in an error matrix. Such a classification may
lead to a relatively good classification result

* Therefore the k (“KHAT”) can be used as measure of the difference between
observed agreement between the reference data and the classification result

and the chance agreement between the reference data and the classification
result.

7 observed accuracy — chance agreement

1 — chance agreement

&

CC-BY-SA SAR-EDU

SAREDU \
‘ Remote Sensing
Education Initiative
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Accuracy Assessment — Kappa Coefficient

r = number of rows in the error matrix

. NZx,.E—Z](xH-xH X; = number of observations in row i and column i (on major diagonal)
k=—"——+ X., = total of observations in row i
NZ—Z(xI. Xy X,; = total od observations on column i

i=] N = total number of observations included in matrix

 KHAT may range between 0 for a totally random distribution (complete
disagreement) and 1 for an exact agreement between the reference data and

the classification result; these ideal cases are not observed in reality
e KHAT includes all elements of the error matrix (also errors of omission and

commission)
Lillesand & Kiefer 2000 \
SAREDU

Remote Sensing
Education Initiative

CC-BY-SA SAR-EDU
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Accuracy Assessment — Kappa Coefficient

>x,  =480+320+780+550+120 = 2250

i=l

D (x;,-x,,) =(495*500) +(370*350) + (815*840) +
i=I (570*560) + (120*120) = 1,395,200

(2370*2250) - 1,395,200

2370%2-1,395,200
0.9326

CC-BY-SA SAR-EDU

Reference Data
Settlement Grassland Farmland Forest Water Row total

Settlement |480 20 0 0 0 500

s Grassland |5 320 25 0 0 350

g Farmland |10 30 780 20 0 840

E Forest 0 0 10 550 0 560

I_UE Water 0 0 0 0 120 120
Column (495 370 815 570 120 2370
total

Remote Sensing
Education Initiative
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Accuracy Assessment — Further reading

* Lillesand, T. M., Kiefer, R. W., Chipman, J. W. (2000): Remote Sensing and Image Interpretation. John Willey & Sons, New
York, pp. 568-575

* Congalton, R. G., Green, K. (2002): Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. CRC Press

e Stehman, S. V. (2009). Sampling designs for accuracy assessment of land cover. International Journal of Remote Sensing,
30(20), pp. 5243-5272.

* NOTE — not specifically adressed:
* Accuracy assessment of change
* Bias and uncertainty of field measurements

SAREDU ‘
Remote Sensing
Education Initiative
CC-BY-SA SAR-EDU \



SAR-EDU Excerpt Eesa

Change Detection

Introduction to Principles and Methods

2 THE EUROPEAN SPACE AGENCY



Bi-Temporal Techniques

What is Change? Unwanted Change

Types of changes

Temporal trajectory Further Reading

short term change

(synoptic weather events)

« cyclic change

(seasonal phenology)

« directional change

(urban development)

 multidirectional change

(deforestation & regeneration)

« event change el O el e e
http://cdnbakmiskaltuE , } 9549200/t
(catastrophic fires) humbnaillig : widih/ojheight/0
http://www.bohrturm.at/templates/
SAREDDU\ images/top/jahreszeiten.jpg

Remote Sensing
Education Initiative
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What is Change? Unwanted Change

Bi-Temporal Techniques

Unwanted Change

...and ways to work around it

e Phenological changes

=» Anniversary date aquisitions
e Sun angle effects

=» Radiometric Calibration

=» Similar incidence angles

=» Similar time of day
e Atmospheric effects

=» Radiometric Calibration

e (Geometric ;
=» Coregistration i
SARE".Dm images‘top/jareten.jpg -

Remote Sensing
Education Initiative 72



Bi-Temporal Techniques

Change detection techniques

- Overview

AN - 16y W W MultwanateAlteraﬂon

Kernel SN } Detection/Maximum
Differencing R A% X Autocorrelation

=S NS \§} 2, Factor (MAD/MAF) —

R \ | Support
| — Vegetation |} 4 = || Vector
Object-based = p Index = - Machines
 multidate o mw/ _Differencing 7 _ { (SVMs)
signature | o

D Algorithm for SAR data

correlation
analysis

D Algorithm for optical data

Classificati ‘ _
cao:;:a‘:iasot:ln \ ‘ ‘ Algorithm for both,
| | | f | optical and SAR data
| .2000s | 1990s | 1980s . | 11980s 1990s 2000s
SAREDU\ THONFELD, HECHELTJEN, BRAUN & MENZ (2010)

Remaote Sensing
Education Initiative



Bi-Temporal Techniques

Image Differencing

* Simple Processing * Requires atmospheric calibration
* Robust * Difference is absloute
* Continous Change Values —> same value may have different meanings

NDVI March 2000
NDVI March 2012
Difference Image

SAREDU ‘
Remaote Sensing
Education Initiative
\ 74
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Bi-Temporal Techniques

-

o —

What is Change? Unwanted Change

Change Vector Analysis

+

« Multidimensional extension of
the image differencing technique

* Capability to analyse change
concurrently in all data layers

Requires accurate rad. Calibration
Requires exact threshold definition

Date 2

« Difference between radiometric
values for multiple bands b
o Date 2
(© -
« Change differences exhibiting @ (e y
. : «_vs Datel
vectors (direction) and ~-
magnitudes (intensity) A
( 1 Datel
\\ ’/
O
1 = No Change Threshold Band 2
SARE;Dm .-

Remote Sensing
Edlucation Initiative
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What is Change? Unwanted Change Bi-Temporal Techniques

Temporal trajectory

* Simple Processing B ° Requires atmospheric calibration
* Robust  Same magnitude of change causes

e Continous Change Values different ratios
- (50/100 = 0.5; 100/50 = 2.0)

Ya
-

R
i

U [2ndseiFMEEEE B g 4 - 1999

COLUEES
SAREDU ‘
Remote Sensing

\ ducation Initiative 76



Temporal trajectory Further Reading

Image Composites

* Simple Processing * Requires prior knowledege of the test

area
 Complex classification scheme (due

to two input dates)

Y5 @r e ‘. L » ® A
L§ LsndomsTMBi885t98and @l Ratio 1986/1999 BAUEEES
SAREDU‘

77
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What is Change? Unwanted Change Bi-Temporal Techniques Temporal trajectory Further Reading

Image Transformations

* e Usually very good results B - Methodological more complex
* Allows designation of

occurring change type

Plot Band 1 vs. Band 2

Principa from TM Scene of Morro Bay
140
* Rotatic ns of
maxim 8 100
S ¢
- Large (8 f ets — first
compon %}
* Sl E‘“’_‘
e dy =f ) in higher
-\ CO OOI - I50‘ - '100. .150I I200I - '250. ~ .300
SAREDU TM Band 1 DN Values
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What is Change? Unwanted Change Bi-Temporal Techniques Temporal trajectory Further Reading

Image Regressions

* « Based on statistical values B ° Accurate threshold definition necessary

« Mathematical model

e Describes the fit between
two multi-date images

« Assumptions: Spectral
properties have not
changed for most pixels
=>» outliers = change

Date 1

( } = No Change Threshold Date 2

\ \ /7
SAREDU ==

ote Sensing
ducation Initiative
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What is Change?

=

Unwanted Change Bi-Temporal Techniques Temporal trajectory Further Reading

Post Classification

* Less prone to radiometrical B - Strong dependence on the

classification accurracy
—> error propagation

differencess

Example:
LULC change in
northern Greece

Sallaba (2009)

SAREDU ‘
Remote Sensing
\ Education Initiative

Appendix Maps IV LULC Change Detection Map Of Imathia

+
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What is Change? Further Reading

Temporal trajectory analysis
* * Exact characterization of B - Highdata demand

phenologocal modifications

Example: Temporal NDVI profile

max

max

o3uel

a8uel

Land Cover Indicator
Land Cover Indicator

Time (Year 1) Time (Year 2)

Redrawn from Borak et al. (2000)
Temporal metrics:

* Annual Maximum * Annual Mean
 Annual Minimum < Temporal Vector
* Annual Range

SAREDU ‘
Remate Sensing
Eclucation Initiative
\ 81
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What is Change?

P .
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P

Further Reading

Unwanted Change Bi-Temporal Techniques Temporal Trajectory

IMAGE ANALYSIS,
CLASSIFICATION, and
CHANGE DETECTION
in REMOTE SENSING

With Algorithms for ENVI/IDL
p

1/7

Morton J. Canty

Further Reading

COPPIN, P., I. JONCKHEERE, K. NACKAERTS, B. MUYS (2004): Digital Change Detection methods in
ceosystem monitoring: a review. International Journal of Remote Sensing, Vol. 25, No. 9, 1565-1596.

LAMBIN, E. & H.J. GEIST (Eds.) (2006): Land-Use and Land-Cover Change: Local Processes and Global
Impacts. Springer. Berlin, Heidelberg.

CANTY, M. J. (2009): Image Analysis, Classification, and Change Detection in Remote Sensing: With
Algorithms for ENVI/IDL. CRC Press. Boca Raton.
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Summary - SAR techniques for forest monitoring Eesa

7 Backscatter analysis (wavelength, polarisation, incidence angle, number of images)

7 Interferometry: coherence analysis (wavelength, polarisation, incidence angle,
temporal and spatial baseline, number of images, acquisition conditions)

7 Interferometry: phase analysis (wavelength, incidence angle, high coherence required,
acquisition conditions)

7 Polarimetry (wavelength, incidence angle, number of images)

7 Polarimetric interferometry (wavelength, polarisation, incidence angle, temporal and
spatial baseline)

7 SAR (polarimetric) tomography (wavelength, polarisation, incidence angle, spatial
baseline, high coherence required, number of images)

2 THE EUROPEAN SPACE AGENCY



Advantages of SAR data vs. Optical and In-situ

4

Higher spatial coverage

\

Higher temporal resolution (repeat cycle e.g. 11 days)

)

Remotely sensed data therefore can be used to fill spatial, attributional, and
temporal gaps in forest inventory data

\

Contactless

)

Detection of unknown regions

= Retrospective analysis
[archived SAR data since 1991 (but not globally))

= Microwaves enable a weather- and illumination-independent imaging process

"11 FAC, 2009, Balzrer, 2001
SAREDL!
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Disadvantages of SAR data vs. Optical and In-situ

7 Backscatter saturation, especially in mature forests with complex
stand structure

7 In rugged or mountainous regions, topography affects backscatter
and influences relationships between radar data and e.g. Above-
ground Biomass = topographic correction is necessary

2 THE EUROPEAN SPACE AGENCY
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