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Jena – City of Light: the heritage of Zeiss, Schott and Abbe
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Educational Objectives of this Lecture

To understand the fundamental differences of optical and radar data

To understand advantages of SAR techniques

To understand the limitations of SAR data

To learn how SAR data can be used for biomass estimation

To be able to investigate optimal sensor and acquisition parameters for forest cover 
monitoring

To learn about change detection techniques

Introduction to Accuracy Assessment
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Sentinel-1

ALOS-2

TanDEM-L

Tab 5Tab 3Tab 2Tab 1 Tab 4

Active Radar Remote Sensing 
A brief history of Microwaves

SAR-EDU>SAR Remote Sensing>An Introduction
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What is forest structure? What is biomass?
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Fundamental differences of optical and radar data - 1

Fig. and Tab.: Main scatterers at different frequencies (Image credentials: THUY LE TOAN, Tab from LE TOAN ET AL., 2001).
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Fundamental differences of optical and radar data - 2
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Spectral signatures from bark beetle infested spruce
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Fundamental differences of optical and radar data 

The main scatterers in a 
canopy are those elements 
having the dimension of 
the order of the 
wavelength used.

Fig. and Tab.: Main scatterers at different frequencies (Image credentials: THUY LE TOAN, Tab from LE TOAN ET AL., 2001).
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• Medium dynamic range

• Stable response to water

• Possible to identify agricultural 
fields

• Higher frame to frame 
variations

• Small dynamic range

• Variable response to water

• Variable response to open areas

• Can be used as indicator of 
environmental effects effecting 
the coherence 

Different wavelengths for forest cover mapping in Siberia
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• Medium dynamic range

• Stable response to water

• Possible to identify agricultural 
fields

• Higher frame to frame variations

• Small dynamic range

• Variable response to water

• Variable response to open areas

• Can be used as indicator of 
environmental effects effecting the 
coherence 

• Higher contrast between forest/non forest 

• Higher sensitivity to forest volume

• Confusion between water and dense forest

• Frame to frame variations 

Courtesy: SIBERIA Project, Univ. Jena

C-Band L-Band C-Coherence

Different wavelengths for forest cover mapping in Siberia
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Fig.: ERS-Tandem intensity image and 1-day repeat-
pass phase coherence image (size 50 km by 100 km)
(LUCKMAN et al., 2000).

Different wavelengths for forest cover mapping in tropics



18

Fig.: JERS intensity image and 44-day repeat-pass 
phase coherence image (size 50 km by 100 km)
(LUCKMAN et al., 2000).

Different wavelengths for forest cover mapping in tropics
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Fig.: JERS intensity image and 132-day repeat-pass 
phase coherence image (size 50 km by 100 km)
(LUCKMAN et al., 2000).

Different wavelengths for forest cover mapping in tropics
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EXCERPT FROM:
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Buddenbaum et al. 2020

Tree Species Classification

❖ Mapping tree species is one of the most common tasks in forest remote sensing.

❖ Since all green vegetation has similar spectra, tree species and/or age class 
classification is challenging

❖ Often additional information is used: time series, 
structural information from secondary data sources 
such as Lidar or Radar, or texture information 
(Buddenbaum et al. 2005, Sommer et al. 2015). 

❖ Multi-temporal data is essential for differentiating 
between tree species. However, owing to frequent 
cloud cover in many regions of the world, it is an 
important challenge to collect observations from 
the required phenological stages (Stoffels et al. 
2015).

Contents
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Two classes, not perfectly separated 
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Buddenbaum et al. 2020

05 Regression: Mapping continuous forest traits

❖ While classification assigns each pixel to a category, regression methods flag each 
pixel with a value on a continuous scale. 

❖ Most common approaches are (Verrelst et al., 2015, 2019):

 Parametric regression (e.g. using a 
spectral index or PLSR),

 Non-parametric regression (e.g. machine 
learning)

 Physically-based model inversion (e.g. 
using InFoRM to derive chlorophyll 
contents)

 Hybrid regression methods (e.g. using a 
reflectance model to train a parametric 
regression)
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Back to Backscatter Mechanisms - Specular
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Backscatter mechanism - Volumetric
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Backscatter mechanism – Double Bounce
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ExamplesMethodsSAR BasicsIntroduction SummaryOverview

indirectlyregression

Biomass estimation methodsAGB

Backscatter InSAR
Conversion from
forest parameter

Relating the
backscatter values to
field biomass
measurements using
regression analysis

Examining the
coherence of two SAR
images collected from
similar viewing
positions with a short
time-lag

e.g. forest height 
estimates from single 

frequency polarimetric-
interferometric SAR 

data

Conversion through 
allometric height-
biomass relations

[after GHASEMI, 2011]

Radar Retrieval Methods (biomass case)



29

The Water Cloud Model

For applications it can be written in terms of growing stock volume

[after WOODHOUSE; THIEL, 2012]
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ExamplesMethodsSAR BasicsIntroduction SummaryOverview

Fig.: Regression analysis of
radar backscatter with forest
AGB. P-band HV
backscattering coefficient
plotted against AGB from
experiments conducted at five
different forests. The green
points with error bars
represent the mean value and
standard deviation of all points
falling within a biomass bin of
+/- 10 tons/ha. The line is a
regression curve applied to the
full dataset. The corresponding
RMSE in biomass is 51.6
tons/ha and the coefficient of
determination r² = 0.67
(Credis: LE TOAN, in ESA, 2008).

The Saturation Problem
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Strength of multi-temporal data - Backscatter

Fig.: Multitemporal data (SANTORO et al., 2006).

JERS Backscatter

RMSE: 33 m3/ha

Relative RMSE: 22 %
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Strength of multi-temporal data - Coherence

ERS Tandem Coherence

RMSE: 10 m3/ha

Relative RMSE: 7 %

Fig.: Multitemporal data (SANTORO et al., 2002).
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Wall-to-wall forest cover mapping – the SIBERIA project

Model definition for coherence 
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v = growing stock volume

0 = coherence at v = 0 m3/ha (non-forest)

 = coherence for asymptotic values of v (corresponding to dense forest)

75 = value where the coherence distribution reach 75% of the maximum value (Fig.)

V = characteristic v value where the exponential function has decreased by e-1 Wagner et al., 2003



34

In the year 2000: SIBERIA Project
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Radar model training with optical product VCF
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DRAGON-2 Change Product
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Image Classification - 1

Classification:

• Systematic arrangement [of data] in groups or categories according to established criteria 
(https://www.merriam-webster.com/dictionary/classification)

• Method for attaching labels to pixels according to their spectral character (Richards & Jia 2006)

• Automatic categorization of all image pixels into land cover classes (Lillesand & Kiefer 2000)

Image classification
(Source: after Lillesand & Kiefer 2000)

https://www.merriam-webster.com/dictionary/classification
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Image Classification - 2

• Further differentiation of classification concepts:

Classification

Object orientedPixel-wise

• Pixel:
• Picture element, smallest geometrical unit

of image data set
• Point information on spectral characteristics, 

e.g. radar backscatter

• Object: 
• Derived from group of pixels with 

common characteristics and relations
• Represents a geographical entity
• Created by segmentation 
• Uses spectral statistics, shape, size, 

texture, context
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Image Classification  - 3
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SAR-EDU Excerpt

Land Cover Classification 
Accuracy Assessment



Accuracy 
Assessm.

CC-BY-SA SAR-EDU

Accuracy Assessment

A classification is not complete until its accuracy is assessed. 
(Lillesand & Kiefer, 2000)
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Accuracy Assessment

• Every classification contains errors

• None of the classification method is perfect

• Possible error sources:
• Geometric errors in input data

• In case of optical data, un-complete atmospheric correction

• Clusters incorrectly labeled after unsupervised classification

• Training sites incorrectly labeled before supervised classification

• Un-distinguishable classes
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Accuracy Assessment

• According to Merriam-Webster English Dictionary, accuracy means:
• freedom from mistake or error

• conformity to truth

• Accuracy is determined empirically by selecting a sample of pixels from classified map 
and checking them against classes determined from reference data (Richards & Jia
2006)

• Reference data 
• Also called “ground truth”

• Are a sample of the physical reality

• Retrieved during field visits, from topographic maps, biotope mappings, orthophotos, etc.

• Can be collected using different sampling schemes

https://www.merriam-webster.com/dictionary/accuracy
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Accuracy Assessment – Number of Samples

𝑁 =
𝑍2𝑝𝑞

𝐸2

Z = 2 (2  [standard deviations] covering 95.4% of the image)

p = expected percent accuracy

q = 100 – p

E = allowable error

• How many samples do need at least?

𝑁 =
22(85 ∙ 15)

52

𝑁 = 204

Example:

If an accuracy of 85% at an error of 5% is exepected, 
then 204 samples should be taken
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Accuracy Assessment – Sampling Schemes

• How should the samples be distributed over the study area?

• For this different sampling schemes are available:
• Simple random sampling

• Stratified random sampling

• Systematic sampling

• Systematic non-aligned sampling

• One- or two-stage cluster sampling
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Accuracy Assessment – Sampling Schemes

Sampling

Random Systematic
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Accuracy Assessment – Sampling Schemes

Settlement

Grassland

Farmland

Forest

Water

• Simple random sampling
• samples taken at random locations

• each sample unit has equal chance of 
being selected

• method my underestimate small but 
important areas; very small areas 
may be missed completely
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Accuracy Assessment – Sampling Schemes

Settlement

Grassland

Farmland

Forest

Water

• Stratified random sampling
• requires some prior knowledge 

about study area to divide area into 
strata

• Minimum number of samples taken 
for each strata

• Samples within strata randomly 
distributed
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Accuracy Assessment – Sampling Schemes

Settlement

Grassland

Farmland

Forest

Water

• Systematic sampling
• samples placed at equally spaced 

positions

• major advantage is ease of sampling 
uniformly over study area
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Accuracy Assessment – Sampling Schemes

• Systematic non-aligned sampling
• combines randomness and 

stratification

• grid used to guarantee even 
distribution of random samples

Settlement

Grassland

Farmland

Forest

Water
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Accuracy Assessment – Sampling Schemes

Settlement

Grassland

Farmland

Forest

Water

• One-stage cluster sampling
• centroids are distributed randomly 

and serve as base for nearby samples

• these samples may be taken 
randomly or systematically
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Accuracy Assessment – Sampling Schemes

Settlement

Grassland

Farmland

Forest

Water

• Two-stage cluster sampling
• In this Example

• First stage: Clusters are selected by 
systematic protocol

• Second stage: Samples are randomly 
selected

• First-stage clusters may also be 
distributed using random scheme

• Second-stage samples may also be 
taken using a systematic scheme
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Accuracy Assessment – Accuracy of ground truth

• Term truth may be misleading

• Accuracy of ground truth rarely known but is usually assumed to be correct

• But:
• Ground truth is almost never completely correct due to: 

• Differences between the time the imagery (input data for classification) was acquired and the time 
ground truth data were collected

• Inconsistencies in assigning classes to ground truth

• Other factors based  on  human  judgment.  

(Carlotto 2009)

• If ground  truth  is  assumed  to  be  correct  but  is  not,  classification  errors  are  
blamed  on  the algorithm or the data, wrongly lowering the classification accuracy 
(Congalton 1991). 
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Accuracy Assessment – Error Matrix

• Error matrix is a way for 
representing accuracy 
assessment
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Accuracy Assessment – Error Matrix
Correct according to 
reference data
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Accuracy Assessment – Error Matrix Off-diagonals –
misclassified 
according to 
reference data

Off-diagonals –
misclassified 
according to 
reference data
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Accuracy Assessment – Overall Accuracy

Overall accuracy = sum of the
diagonals divided by the grand
total (expressed as a percent)
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Accuracy Assessment – Individual Class Accuracy

Individual Class Accuracy is
given by the diagonal value
divided by the row or column
total (expressed as a percent).

Example for class Farmland:
(780/840) * 100 = 93.71%
or
(780/815) *100 = 92.86%
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Accuracy Assessment – Individual Class Accuracy

Individual Class Accuracy is given by the diagonal value divided by the row or
column total (expressed as a percent)

Example for class Farmland:
780/840 = 93%
or
780/815 = 96%

Why are there two values for
describing the individual class
accuracy for the class
„Farmland“?

Because there are two types of errors!
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Accuracy Assessment – Error Types

• Errors of omission
• sites that were not included and are 

now falsely part of other classes

• Example for class “Farmland”:
• 10 pixels from class “Settlement”, 30 

pixels from class “Grassland”, and 20 
pixels from class “Forest” have been 
falsely classified, which actually should 
belong to class “Farmland”
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Accuracy Assessment – Error Types

• Errors of commission
• Sites that are included in a class but are 

part of other classes

• Example for class “Farmland”:
• Class “Farmland” contains 25 pixels 

belonging to class “Grassland” and 10 
pixels belonging to class “Forest”
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Accuracy Assessment – Error Types

• Errors of commission and omission linked with two specific accuracy 
measures

• Producer’s Accuracy
• Describes how often are real features on the ground are correctly shown on the 

classified map

• Is the probability that a certain land cover of an area on the ground is classified as 
such. 

• User’s Accuracy
• Describes how often the class on the map will actually be present on the ground

• This is referred to as reliability.
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Accuracy Assessment – Error Types

• Producer’s Accuracy for a class is 
calculated from the diagonal 
value divided by the column total.

• Example for class “Farmland”:
(780/815) * 100 = 95.71%
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Accuracy Assessment – Error Types

• Users’s Accuracy for a class is 
calculated from diagonal value 
divided by the row total.

• Example for class “Farmland”:
(780/840) * 100 = 92.86%
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Accuracy Assessment – "KHAT"

• Theoretically also a totally random assignment of pixels to classes will result in a 
certain percentage of correct values in an error matrix. Such a classification may 
lead to a relatively good classification result

• Therefore the     (“KHAT”) can be used as measure of the difference between 
observed agreement between the reference data and the classification result 
and the chance agreement between the reference data and the classification 
result.

෠𝑘 =
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

1 − 𝑐ℎ𝑎𝑛𝑐𝑒 𝑎𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡


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Accuracy Assessment – Kappa Coefficient

r = number of rows in the error matrix

xii = number of observations in row i and column i (on major diagonal)

xi+ = total of observations in row i

x+i = total od observations on column i

N = total number of observations included in matrix

• KHAT may range between 0 for a totally random distribution (complete 
disagreement) and 1 for an exact agreement between the reference data and 
the classification result; these ideal cases are not observed in reality

• KHAT includes all elements of the error matrix (also errors of omission and 
commission) 
Lillesand & Kiefer 2000



Accuracy 
Assessm.

CC-BY-SA SAR-EDU

Accuracy Assessment – Kappa Coefficient

= 480+320+780+550+120 = 2250

= (495*500) + (370*350) + (815*840) + 
(570*560) + (120*120) = 1,395,200

(2370*2250) – 1,395,200

23702 – 1,395,200 
=

=   0.9326
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Accuracy Assessment – Further reading

• Lillesand, T. M., Kiefer, R. W., Chipman, J. W. (2000): Remote Sensing and Image Interpretation. John Willey & Sons, New 
York, pp. 568-575

• Congalton, R. G., Green, K. (2002): Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. CRC Press

• Stehman, S. V. (2009). Sampling designs for accuracy assessment of land cover. International Journal of Remote Sensing, 
30(20), pp. 5243-5272.

• NOTE – not specifically adressed: 
• Accuracy assessment of change

• Bias and uncertainty of field measurements
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SAR-EDU Excerpt

Change Detection

Introduction to Principles and Methods
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© USGS

Types of changes

• short term change 

(synoptic weather events)

• cyclic change 

(seasonal phenology)

• directional change 

(urban development)

• multidirectional change 

(deforestation & regeneration)

• event change 

(catastrophic fires)
http://cdnbakmi.kaltura.com/p/695492/sp/69549200/t

humbnail/entry_id/0_2gt4gz7a/width/0/height/0

http://blogbrot.gaarden.net/files/2012/04/
Hagel-in-Kiel-Gaarden-002.jpg

http://www.bohrturm.at/templates/
images/top/jahreszeiten.jpg

http://www.taos-telecommunity.org/epow/epow-
archive/archive_2006/EPOW-060515_files/6196%2 

0Congo%20Basin%20forest%20&%20cultivn.jpg

What is Change? Bi-Temporal TechniquesUnwanted Change Temporal trajectory Further Reading
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What is Change?

Unwanted Change

• Phenological changes

➔ Anniversary date aquisitions

• Sun angle effects

➔ Radiometric Calibration

➔ Similar incidence angles

➔ Similar time of day

• Atmospheric effects

➔ Radiometric Calibration

• Geometric

➔ Coregistration

http://www.bohrturm.at/templates/
images/top/jahreszeiten.jpg

QB – Pan                                                              © DigitalGlobe

WV – Pan                                                             © DigitalGlobe

LS- Band 3        LS-Band 2         LS-Band 1 © USGS 

QB – Pan                                     WV-Pan           © DigitalGlobe

Unwanted Change Bi-Temporal Techniques Temporal trajectory Further Reading

…and ways to work around it
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Change detection techniques
- Overview

Unwanted Change Bi-Temporal TechniquesWhat is Change? Temporal trajectory Further Reading

Algorithm for SAR data

Algorithm for optical data 

Algorithm for both, 

optical and SAR data

THONFELD, HECHELTJEN, BRAUN & MENZ (2010)
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Unwanted Change Bi-Temporal Techniques

Image Differencing
• Simple Processing
• Robust
• Continous Change Values

• Requires atmospheric calibration
• Difference is absloute

→ same value may have different meanings

What is Change? Temporal trajectory Further Reading

NDVI March 2000
NDVI March 2012
Difference Image

© NASA
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Change Vector Analysis

• Multidimensional extension of 
the image differencing technique 

• Difference between radiometric 
values for multiple bands 

• Change differences exhibiting 
vectors (direction) and 
magnitudes (intensity)

B
an

d
 1

Band 2

Date 2

Date 1

Date 2

Date1

= No Change Threshold

• Capability to analyse change
concurrently in all data layers

• Requires accurate rad. Calibration
• Requires exact threshold definition

Unwanted Change Bi-Temporal TechniquesWhat is Change? Temporal trajectory Further Reading
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Landsat TM5 1985 – Band 4                              © USGS

Ratios
• Simple Processing
• Robust
• Continous Change Values

• Requires atmospheric calibration
• Same magnitude of change causes

different ratios
→ ( 50/100 = 0.5; 100/50 = 2.0)

Landsat TM5 1999 – Band 4                             © USGSTM Band 4-1986 / TM Band 4 - 1999           © USGS

1986 1999

Unwanted Change Bi-Temporal TechniquesWhat is Change? Temporal trajectory Further Reading
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Landsat TM5 1999 – Band 4                                   © USGSLS- 1986            LS-1999            Ratio 1986/1999 © USGS Landsat TM5 1985 – Band 4                                   © USGS

Image Composites
• Simple Processing • Requires prior knowledege of the test

area
• Complex classification scheme (due 

to two input dates)

1986 1999

Unwanted Change Bi-Temporal TechniquesWhat is Change? Temporal trajectory Further Reading
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Image Transformations
• Usually very good results
• Allows designation of

occurring change type

• Methodological more complex

Principal Components Analysis (PCA)

• Rotation and scaling along orthogonal directions of

maximum variance

• Large correlation among multi-temporal datasets – first

component:

• state (Principal components)

• dynamics (seasonality, longer term trends) in higher

components

Unwanted Change Bi-Temporal TechniquesWhat is Change? Temporal trajectory Further Reading
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Image Regressions

• Based on statistical values • Accurate threshold definition necessary

• Mathematical model

• Describes the fit between 
two multi-date images

• Assumptions: Spectral 
properties have not 
changed for most pixels 
➔ outliers = change

D
at

e 
1

Date 2= No Change Threshold

Change

Unwanted Change Bi-Temporal TechniquesWhat is Change? Temporal trajectory Further Reading
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Post Classification
• Less prone to radiometrical

differencess
• Strong dependence on the

classification accurracy
→ error propagation

Example: 
LULC change in

northern Greece

Sallaba (2009)

Unwanted Change Bi-Temporal TechniquesWhat is Change? Temporal trajectory Further Reading
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Bi-Temporal Techniques Temporal trajectory

Temporal trajectory analysis

• Exact characterization of 
phenologocal modifications

• High data demand
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Example: Temporal NDVI profile

Temporal metrics:
• Annual Maximum
• Annual Minimum
• Annual Range

• Annual Mean
• Temporal Vector

Unwanted ChangeWhat is Change? Further Reading

Redrawn from Borak et al. (2000)
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Temporal Trajectory
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Summary - SAR techniques for forest monitoring

Backscatter analysis (wavelength, polarisation, incidence angle, number of images)

Interferometry: coherence analysis (wavelength, polarisation, incidence angle,
temporal and spatial baseline, number of images, acquisition conditions)

Interferometry: phase analysis (wavelength, incidence angle, high coherence required,
acquisition conditions)

Polarimetry (wavelength, incidence angle, number of images)

Polarimetric interferometry (wavelength, polarisation, incidence angle, temporal and
spatial baseline)

SAR (polarimetric) tomography (wavelength, polarisation, incidence angle, spatial
baseline, high coherence required, number of images)
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Advantages of SAR data vs. Optical and In-situ



85

Disadvantages of SAR data vs. Optical and In-situ

Backscatter saturation, especially in mature forests with complex 
stand structure

In rugged or mountainous regions, topography affects backscatter 
and influences relationships between radar data and e.g. Above-
ground Biomass → topographic correction is necessary
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Thank you for your attention and greetings from

the Jena Earth Observation team (during its yearly winter retreat) 
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