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Overview

• Introduction
• SAR imaging sensors, data and processing
• Change detection approaches
• Demonstration use-cases

• mapping snow damaged forest using Sentinel-1 image time series
• mapping wind-thrown forest using Sentinel-1 image time series and auxiliary data
• Autochange in forest disturbance mapping using Sentinel-2 imagery

• Practical session: SNAP graph-based processing, stand-level feature calculation and SVM
classification using Python libraries.
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Types of forest disturbances

• Anthropogenic disturbances
• Forest management operations
• Slash and burn agriculture
• Small-scale collection of brunches
• Land cover/use type conversion

• Natural forest disturbances
• Forest fires (mapping of burned areas and active fire detection)
• Forest windthrows
• Insect damage
• Snow-damage

Further, we discuss primarily SAR and SAR+optical data based approaches in forest disturbance mapping
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SAR image analysis as an inverse problem

I (x,y) = F […, { target properties }, …]

{ target properties } = F-1 [ I (x,y) ]
{ target properties} :
{moisture,
roughness,
orientation,
vertical structure,
density,
spatial structure} Basic exploitation of SAR images: backscattering coefficient

- Values of  are directly related to the scene properties
- Strong influence of acquisition geometry and frequency band on the response from targets
- Many different causes may produce the same  value: e.g. soil moisture, ground roughness,

presence of small plants, etc.
- Biophysical parameter retrieval:

- by inverting forward scattering models
– statistical (empirical, semi-empirical) relationship can be established between SAR observables

and biophysical
… many parameters for a single observable

Basic exploitation of SAR images: backscattering coefficient
- Values of  are directly related to the scene properties

- Strong influence of acquisition geometry and frequency band on the response from targets
- Many different causes may produce the same  value: e.g. soil moisture, ground roughness,

presence of small plants, etc.
- Biophysical parameter retrieval:

- by inverting forward scattering models
– statistical (empirical, semi-empirical) relationship can be established between SAR observables

and biophysical
… many parameters for a single observable



5

Different sensitivity to geometrical and electrophysical properties of illuminated targets

SAR

SAR interferometry (InSAR)

SAR polarimetry

Pol-InSAR
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Differential SAR Interferometry

Persistent scatterers

Tomography

Coherence Tomography

CCD

more polarizations

Compact Pol

Multiparametric SAR approaches

Increasing parameter-space:
•Multitemporal
•Multifrequency
•Multi-sensor
•Multi angular
•Interferometric
•Multibaseline
•Multi-polarization
•Various combinations
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Recent SAR sensors

• Sentinel-1A,B
• RADARSAT-2
• ALOS-2 PALSAR-2
• TerraSAR-X TanDEM-X
• Cosmo-SkyMed
• ICEYE
• Capella Space

Approaching:
• BIOMASS
• Rose-L
• TanDEM-L
• NiSAR

©JAXA, L-band, 2006-2011 ©CSA/MDA, C-band, 2007-now ©DLR, X-band, 2007-now

©DLR, X-band, 2010-now©ASI, X-band, 4, 2007…2010-now
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Forest mapping with SAR

• SAR to forest biomass relationship

Ulaby and Long. Microwave Radar and Radiometric Remote Sensing, Artech House 2014
Le Toan et al., Relating radar remote sensing of biomass to modelling
of forest carbon budgets, J. of Climatic Change, 2004.
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Forest mapping with SAR

• SAR to forest biomass relationship (boreal forest at L-band)

Antropov et al., Polarimetric ALOS PALSAR Time Series in Mapping Biomass of Boreal Forests. Remote Sensing. 2017; 9(10):999.
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Forest mapping with SAR

• InSAR to forest biomass relationship (hemiboreal forest at X-band)

A. Olesk et al., Interferometric SAR Coherence Models for Characterization of Hemiboreal Forests Using TanDEM-X Data, Remote Sensing 8.9 (2016), p. 700.
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Change detection (CD) approaches

• Simple considerations
• bi-temporal CD approaches are preferred over monotemporal (single image classification into

change/no-change classes)
• Post-classification CD is generally suboptimal
• Multitemporal CD approaches are preferred over all others
• No need to use exclusively EO sensor data (DEMs, weather data)

• Feasibility of approaches depends:
• Data type (e.g., SAR, InSAR, Pol-InSAR, TomoSAR)
• Sensor wavelength
• Acquisition geometry
• Algorithmic approach and data continuity
• Quality of reference dataset
• Data costs and availability
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Algorithmic approaches to change detection

Feature calculation (pixel- or stand-level)
• sequence of measurements as independent features
• various ratios, moments
• time signal based features (to account for temporal dynamics)

Change implemented as
• Statistical hypothesis testing (e.g. distance between pdfs).

Can also deliver probabilistic information and change magnitude.
• Post-classification (post-retrieval) change detection.

Often needs auxiliary data and exhibits lower accuracy, however explicit information on class transitions.
• Classifier in binary or multiclass classification using “image time series” or “change signal” . Statistical post-

processing can be used to derive uncertainties.
• Deep learning classification or change-detection can be done.
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Algorithmic approaches to change detection

Supervised approaches
• Random forests,
• SVMs,
• maximum likelihood
• kNN (ikNN)
• logistic regression

Non-supervised approaches
• K-means,
• iso-data,
• physics-based indicators, e.g., “radiometric contrast”

Weakly supervised approaches
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Sampling and accuracy assessment

Sampling is critical is model training and accuracy assessment.
• Sampling design – non-stratified (simple) and stratified approaches

• Random sampling
• systematic sampling

Thematic accuracy assessment based on confusion matrix
Accuracy measures

• User’s and producer’s accuracies
• F-1 score
• Cohen’s kappa
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Recent developments in forest change mapping

Sample-based reference data provide the
primary reliable source for area change
estimation

Forest mapping difficulties:
• Interpretation/attribution of change
• Possible over/underestimation of change

based on EO data quality
• Heavy weight on EO value-added products
• Lack of reference data

Areas identified as natural disturbances.

• Ceccherini, G. et al. Abrupt increase in harvested forest area over
Europe after 2015. Nature 583, 72–77 (2020).

• Palahí, M., Valbuena, R., Senf, C. et al. Concerns about reported
harvests in European forests. Nature 592, E15–E17 (2021)
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Data issues: mosaicking

Rosenqvist et al., An overview of the JERS-1 SAR Global
Boreal Forest Mapping (GBFM) project, IGARSS 2004, ©IEEE

Antropov et al., PolSAR mosaic normalization for improved
land cover mapping, IEEE GRSL, 2012, ©IEEE
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PolSAR RGB composite,
Kuortane, Finland,
November 2007

PolSAR RGB composite,
Kuortane, Finland,

May 2008

Data issues: seasonal variation

Antropov et al., Volume scattering modeling in PolSAR decompositions: Study of ALOS
PALSAR over boreal forest, IEEE Trans. Geoscience Remote Sensing, 2011, ©IEEE

Antropov O, Rauste Y, Häme T, Praks J. Polarimetric ALOS PALSAR Time Series in Mapping Biomass of
Boreal Forests. Remote Sensing. 2017; 9(10):999.
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SAR data ”flattening”

Normalization areas for SAR backscatter Topology of radar geometry

Small et al., Flattening gamma: Radiometric terrain correction for SAR imagery, IEEE Trans. Geoscience Remote Sensing, 2011, ©IEEE
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SAR data ”flattening”

Small et al., Flattening gamma: Radiometric terrain correction for SAR imagery, IEEE Trans. Geoscience Remote Sensing, 2011, ©IEEE
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Demonstration Use-cases
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Objective: to test the usability of Sentinel-1
observations in forest damage localization and
severity assessment

• Test site, Kainuu, Finland
• In collaboration with Aalto university and

Bitcomp
• Finnish Forest Centre data
• Background, serious snow damages late

December 2107
Challenges:
The severity varies continuously
Imaging conditions, the temperature, snow,
moisture, vary and affect backscattering

Snow damage mapping: Introduction

Tomppo, E.; Antropov, O.; Praks, J. Boreal Forest Snow Damage Mapping
Using Multi-Temporal Sentinel-1 Data. Remote Sens. 2019, 11, 384.

Image:©Sanna Härkönen
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Snow damage mapping: Study area, SAR and reference data

Reference data
Sanitary cutting reports were available from the
Finnish Forest Centre (Metsäkeskus, 2018), along with
MS-NFI data from Natural Resources Institute Finland
(Luke, 2018 for sampling non-damaged stands.

Training and testing dataset: a sample of 929 damaged
forest stands and a sample of intact forest stands.

Multitemporal composite of Sentinel-1 images (green-VH,
red-VV). Red polygons denote sanitary cutting reports
from Forest Centre (Metsäkeskus,2018).

14 km x 7 km, images: ©ESA

40 km x 80 km, images: ©ESA, ©Google Earth
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Snow-damaged forest mapping: overall approach

SNAP image
preprocessing

reference
data

training
data

testing
data

Feature
calculation

multitemporal
Sentinel-1

stack
classification

model training

Model testing /
mapping

feature set

trained
model

produced
map

Accuracy
assessment

Sentinel-1
imagery
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Snow-damaged forest mapping: SAR features and methods

Classification approaches:
• Logistic regression analysis for binary data (LR),
• an improved k-NN method (ik-NN) for categorical variables
• support vector machine (SVM)
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Snow-damaged forest mapping: Results

Tomppo, E.; Antropov, O.; Praks, J. Boreal Forest Snow Damage Mapping Using Multi-Temporal Sentinel-1 Data. Remote Sens. 2019, 11, 384.



25

Snow damage mapping: Results

Results with SVM classification
• Overall accuracy up to ~91%
• User’s accuracy for damaged up to ~90%
• Producer’s accuracy for  damaged up to ~72%
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Windstorm damage

• Windstorms cause noticeable large area forest damages in Europe, including Scandinavia and Finland.
• In Finland, reported forest cuttings due to damage were over 30,000 ha in Northern Finland in 2014,

and more than 6000 ha in Eastern Finland in July 2020.
• Rapid localization of the forest damages and removal of the fallen trees is the key for assessing the

losses, as well as avoiding further damage, caused, e.g., by insects.

Tomppo et al., Detection of Forest Windstorm Damages with Multitemporal
SAR Data—A Case Study: Finland. Remote Sens. 2021, 13, 383.

Image: ©Metsäkeskus

Image: ©National Land Survey of Finland
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Windstorm forest damage: Study area, SAR and reference data

Reference data
Data were selected in collaboration with Finnish Forest
Centre (Metsäkeskus), along with MS-NFI data from
Natural Resources Institute Finland (Luke) for sampling
non-damaged stands.
Number of damaged stands was 313 (195 were severely
damaged), non-damaged 664. The entire dataset was
split into training (3/4) and validation dataset (1/4).
Separate analysis was done for the entire dataset and for
stands with growing stock volume larger than 75 m3/ha

Multitemporal composite of Sentinel-1 images (green-VH,
red-VV). Red polygons denote sanitary cutting reports
from Forest Centre (Metsäkeskus,2018). row image source: ©ESA
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Windstorm forest damage : additional data layer

Additional explanatory variables in the models:
MS-NFI based:
• mean diameter of the trees,
• mean height of the trees,
• mean age of the trees
• basal area of trees
• growing stock volume by PFT.
DEM-based: average elevation, slope and aspect
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Windstorm forest damage : classification methods

Classification approaches:
• the improved k-NN (ik-NN),
• Multinomial logistic regression (MLR)
• support vector machine classifier (SVM)

The observations units in the models were forest stand level

The flowchart of the windstorm
detection methodology using
Sentinel-1 time series
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Windstorm forest damage: Results
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Windstorm forest damage: Results

• Support vector machine (SVM) gave the largest overall accuracies among the three methods tested, improved k-NN (ik-NN),
multiple logistic regression (MLR) and SVM.

• The proportion of correctly classified stands (OA) in a separate validation data was 79%,and 75% if only one Sentinel-1 scene
after the damage was used. The user’s accuracy(UA) for severe damages was 62%, and 75% for slight damages. The
producer ’s accuracies (PAs) were somewhat lower.

• The accuracy of 75% was achieved using only one Sentinel-1scene after the damage, here two days after the damage, in
addition to the data before the damage.

• Using segmentation-based calculation units only slightly increased the OA, implying that this approach may presume further
work. Most likely, not only SAR data, but also inventory and other auxiliary data should be used in the segmentation
methodology.

• The study indicates that the damages could be localized using only one Sentinel-1scene after the damage implying a time-lag
of potential satellite SAR-based assessment method would be just a few days after the damage.
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Windstorm forest damage : results and uncertainties
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Figure 6. Output of S2-Autochange
classification (3.6 x 3.6 km2)
(a) Sentinel-2A 2015,
(b) Sentinel-2A 2016,
(c) observations selected for

clustering as white dots,
(d) primary clusters from pre-

change image sorted by
increasing red band
reflectance,

(e) change type,
(f) change magnitude.

Häme et al. Remote Sens. 2020, 12, 1751

VTT AutoChange approach

Image source: ©ESA
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AutoChange was tested:
• Forest cover change
• Forest harvesting
• Forest damages

1990 2010

August 2015

Forest cover change in Chiapas, Mexico

Sentinel-2 August 2015 Sentinel-2 September 2016 and
detected clear cuts 2015-2016

Sentinel-2 September 2017 and
detected clear cuts 2016-2017

Detected clear cuts in Ähtäri, Finland

Landsat false color composites

AutoChange based monitoring of forest cover

Image source: ©U.S. Geological Survey

Produced forest cover mapsImage source: ©ESA
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Detecting changes in forest during “Uuno” storm in June 2020 using
AutoChange method and Sentinel-2 images in Kainuu in Finland

Size of the area is 1.6 km x 1.6 km

Sentinel-2 23.6.2020 Sentinel-2 29.6.2020 Change magnitude from AutoChange
L. Sirro, T. Häme, EU Forest Flux project, ongoing work
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Conclusions

• Time-series are better than bi-temporal approaches or single-image interpretation
• Also auxiliary datasets, un addition to EO measurements, can be used
• Feature selection is important to identify most useful explanatory variables
• Sensor parameters and data continuity need to be carefully factored into analysis
• Reliable reference data  and sampling design are critical
• Produced map (forest variable or change-map) is not very useful without uncertainty information


