10TH ADVANCED TRAINING COURSE:ON @esa

LAND REMOTE SENSING

Natural disturbances of forests : lecture
Oleg Antropov, VTT Technical Research Centre of Finland
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Overview

 Introduction

 SAR imaging sensors, data and processing

* Change detection approaches

 Demonstration use-cases
* mapping snow damaged forest using Sentinel-1 image time series
* mapping wind-thrown forest using Sentinel-1 image time series and auxiliary data
» Autochange in forest disturbance mapping using Sentinel-2 imagery

* Practical session: SNAP graph-based processing, stand-level feature calculation and SVM
classification using Python libraries.
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Types of forest disturbances

* Anthropogenic disturbances
» Forest management operations
« Slash and burn agriculture
« Small-scale collection of brunches

« Land cover/use type conversion

* Natural forest disturbances
» Forest fires (mapping of burned areas and active fire detection)

e Forest windthrows

* Insect damage

e Snow-damage

Further, we discuss primarily SAR and SAR+optical data based approaches in forest disturbance mapping
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SAR Iimage analysis as an inverse problem
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Basic exploitation of SAR images: 'backscattering coefficient
- - Values of o, are directly related to the scene properties : :
~ - Strong influence of acquisition geometry and frequency band on the response from targets

- Many different causes may produce the same o, value e. g Soil moisture, ground roughness
presence of small plants, etc. - : :

- Biophy5|cal parameter retrieval:
- by inverting forward scattenng models

- - statistical (empirical, semi- emplrlcal) relatlonshlp can be establlshed between SAR observables
and biophysical
. many. parameters for a single obsen/able
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Multiparametric SAR approaches

Different sensitivity to geometrical and electrophysical properties of illuminated targets

x Increasing parameter-space:

| Tomogrpy__| Multitemporal

*Multifrequency

Multi-sensor

*Multi angular
sInterferometric
*Multibaseline
*Multi-polarization
sVarious combinations
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Recent SAR sensors

- Sentinel-1A,B ALOS PALSAR wamiaare o
« RADARSAT-2 9 -
« ALOS-2 PALSAR-2

e TerraSAR-X TanDEM-X
» Cosmo-SkyMed

o |CEYE : i S ; e i . zsssb‘sldsnm Mmory | R 3
©JAXA, L-band, 2006-2011 ©CSA/MDA C band 2007 -now ©DLR, X-band, 2007-now

o Capella Space

Approaching:

e BIOMASS
 Rose-L
e TanDEM-L
 NISAR

©DLR, X-band, 2010-now
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Forest mapping with SAR

« SAR to forest biomass relationship

1 cm wavelength 1 m wavelength

( oL-HY
@F - HV
@HF - VHF
-30 v
40 80 120 160
Above-ground biomass (tonnes/ha)

Figure 1. Relationships between the radar backscattering coefficient (in dB m?/m?) and above-ground

Backscattering coemcient® (dB)

o

. . . hiomass (in tonnes/ha) observed at the Landes forest. The radar measurements are at L-band (wave-
Radar Slgnal Slgnal from S lgnal ﬁom length 25 cm) HY polarisation, P band (wavelength 70 cm) HV polarisation, and VHF band (wave-
length 3—15 m), HH polarisation.
from tree crown crown, trunks, crown, trunks
ground
. . . . Le Toan et al., Relating radar remote sensing of biomass to modelling
Ulaby and Long. Microwave Radar and Radiometric Remote Sensing, Artech House 2014

of forest carbon budgets, J. of Climatic Change, 2004.
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Forest mapping with SAR

* SAR to forest biomass relationship (boreal forest at L-band)

T o g, RVT CSliy csl
— v L 1
3 45 ] ¥ 1 0.42 0.49 = i
35 . = . 2 - 2 [
ol e . 10 7 i b 04ft i 2
-+ - . . E |, . -t 0.8 - n . 7
DR ) [ = 1 - ol © o np . ] i - - i L s s Rl
45 - » e R ) B < A 2 - 038 " - 3y | g
g B “: o I i o | - Soaf ey . : o ]
28 el = - e 8 ' = I, = P . [ I, o gl = o 0.45 b 2 - .
5 A 2 i 1 1 o] e s e - R R Foast" - . 3 o R
4 . R ] A g [.o.° B [ = - = 5 Bl . N
P g §s a1 30 e 5 ; Ll ——
] - 3 |5 3-BE 5 o7 ) 20 1 ) T
& 5 . 8 TR 2 L E " . e e . i
z ’ o” 14t 20 - ! 0.42 S
grw ; . o s Jr_es, .-
25 - 1 032 =i I
S F e . % 041 & -
- - 05 —: - "
75 8L —15:__ i o - - ]
fo s w0 s 20 20 a0 7 04 0.28 0.9
0 50 100 150 200 250 300 o 50 100 150 200 250 300 [ S0 100 150 200 250 300 0 50 100 150 200 250 300 0 5 100 150 200 250 300
stem valume stem volume stem volume Stem volume Stem volume Stem volume
P, »
0 * 08 o 510 < hiwe I, /R Ty /P
o B} 08 0.32 .
05 e - .
= 1 e arh " : vt 03 Ouwn, 0w, | HH, Wand
1 T ) . ‘ 026 = g Oy, HV backscatter in dB
o 15 el i "'- oM T g osfi ' 07 058 . L B total power (span) in dB
¥ s & & |1 . 2 i [T 4 big @ 024f- - pot Ml IF Pinvi | HH-VV coherence and
3 1 § 05 . b i g 3 i i L phase difference
& - I Ss T &- b H sea, T e S S ’ -
g .2 ] .. . 2 . -4 g | i ' RVI Radar Vegetation Index
g ] . o . H v | e = 02p" .
Foaf—i . Y e 5 e fo cst, | 5 holing
o ‘s . 085 b sk . 018k, . anopy Scattering Index
8 ’ a3 5 HH
E . . . 016 - »
e " % 05 e T, /P, | Surface scattering fraction
. - 0.14 In/k Even-bounce scattering fraction
0.2 = 4 045 0.12
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 5 100 150 200 250 300
stem volume stem volume stem volume Stem volume Stem volume

Antropov et al., Polarimetric ALOS PALSAR Time Series in Mapping Biomass of Boreal Forests. Remote Sensing. 2017; 9(10):999.
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Forest mapping with SAR

* INSAR to forest biomass relationship (hemiboreal forest at X-band)

1 1 30
14 Linear
———8inc
0.8 12 0.8 ———RVoG
[0] @
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—5_ =
= 06 g 0.6
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e 0.4 16 = 0.4
§e) 5 S 110
O 1, (&)
0.2 0.2
4 2 1 5
0 — 0 _—
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ALS measured stand height [m] ALS measured stand height/InSAR HoA

A. Olesk et al., Interferometric SAR Coherence Models for Characterization of Hemiboreal Forests Using TanDEM-X Data, Remote Sensing 8.9 (2016), p. 700.
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Change detection (CD) approaches

* Simple considerations

* bi-temporal CD approaches are preferred over monotemporal (single image classification into
change/no-change classes)

» Post-classification CD is generally suboptimal
« Multitemporal CD approaches are preferred over all others

* No need to use exclusively EO sensor data (DEMs, weather data)

* Feasibility of approaches depends:
« Datatype (e.g., SAR, INSAR, Pol-InSAR, TomoSAR)
e Sensor wavelength
* Acquisition geometry
« Algorithmic approach and data continuity
e Quality of reference dataset

 Data costs and availability
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Algorithmic approaches to change detection

Feature calculation (pixel- or stand-level)
* sequence of measurements as independent features
e various ratios, moments

» time signal based features (to account for temporal dynamics)

Change implemented as

e Statistical hypothesis testing (e.g. distance between pdfs).
Can also deliver probabilistic information and change magnitude.

» Post-classification (post-retrieval) change detection.
Often needs auxiliary data and exhibits lower accuracy, however explicit information on class transitions.

» Classifier in binary or multiclass classification using “image time series” or “change signal” . Statistical post-
processing can be used to derive uncertainties.

» Deep learning classification or change-detection can be done.
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Algorithmic approaches to change detection

Supervised approaches
 Random forests,

e SVMs,

 maximum likelihood

« kNN (ikNN)

» logistic regression
Non-supervised approaches
« K-means,

* iso-data,

» physics-based indicators, e.qg., “radiometric contrast”

Weakly supervised approaches
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Sampling and accuracy assessment

Sampling is critical is model training and accuracy assessment.
o Sampling design — non-stratified (simple) and stratified approaches
 Random sampling
e systematic sampling
Thematic accuracy assessment based on confusion matrix
Accuracy measures
» User’s and producer’s accuracies
 F-1 score

 Cohen’s kappa
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Recent developments in forest change mapping

Windthrow in Central Europe

Change in harvested forest area
2016-2018 versus 2004-2015 (%)

100 200 . . .
(from ref. ) Forest mapping difficulties:

* Interpretation/attribution of change

* Possible over/underestimation of change
based on EO data quality

 Heavy weight on EO value-added products

* Lack of reference data

0

Bark beetle in Czech Republic

Il Windthrow events 2016-2018

Sample-based reference data provide the
primary reliable source for area change
estimation

Pine pm::essmnary rnoth |n Spain

Volume of trees killed (m? = 1,000)
Cumulative 2016-2018
2.6-321
321773
77.3-126.7
126.7-250.6
250.6-402.5
402.5-983.6
983.6-3,349.2

[ I I

Insect damage (%)
Average 2016-2018
[1<25% WE>25% Europe after 2015. Nature 583, 72—77 (2020).

e Palahi, M., Valbuena, R., Senf, C. et al. Concerns about reported
harvests in European forests. Nature 592, E15-E17 (2021)

e Ceccherini, G. et al. Abrupt increase in harvested forest area over

Areas identified as natural disturbances.
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Data issues: mosaicking @esa

s e
Rosenqvist et al., An overview of the JERS-1 SAR Global 100 m JERS-1 SAR mosaic over Europe (1997/98).
Boreal Forest Mapping (GBFM) project, IGARSS 2004, ©IEEE (incomplete draft). GBFM © JAXA/JRC/JPL
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Data issues: seasonal variation

Rough Surface
N R
NG

,_w,.r A

2006/11/11

R

2009/05/19

2007/0514
©JAXA and METI, 2006-2009

200711114

PoISAR RGB composite, PoISAR RGB composite,
Kuortane, Finland, Kuortane, Finland,
November 2007 May 2008

Antropov O, Rauste Y, Hame T, Praks J. Polarimetric ALOS PALSAR Time Series in Mapping Biomass of

Antropov et al., Volume scattering modeling in PoISAR decompositions: Study of ALOS
PALSAR over boreal forest, IEEE Trans. Geoscience Remote Sensing, 2011, ©IEEE Boreal Forests. Remote Sensing. 2017; 9(10):999.
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SAR data " flattening”

Map » Range Doppler
Geometry Geometry

........

Northing

:Aﬁ
: — Easting
\ . Y
Map Range Doppler
Geometry Geometry

Normalization areas for SAR backscatter Topology of radar geometry

Small et al., Flattening gamma: Radiometric terrain correction for SAR imagery, IEEE Trans. Geoscience Remote Sensing, 2011, ©IEEE
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SAR data " flattening”

S S

ENVISAT ASAR Wide Swath VV Image acquired on 2008.09.10 of Vancouver Island and southwestern British Columbia, Canada—SRTM3 IDHM used
for terrain-geocoding and radiometric corrections. (a) Local contributing area A~ (image simulation), (b) '}‘% GTC, (c) JR,DR LIM NORLIM, (d) ')-g, RTC.

Small et al., Flattening gamma: Radiometric terrain correction for SAR imagery, IEEE Trans. Geoscience Remote Sensing, 2011, ©IEEE

+ THE EUROPEAN SPACE AGENCY




Demonstration Use-cases
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Snow damage mapping: Introduction

Objective: to test the usability of Sentinel-1
observations in forest damage localization and
severity assessment

 Test site, Kainuu, Finland

* In collaboration with Aalto university and
Bitcomp

 Finnish Forest Centre data

« Background, serious snow damages late
December 2107

Challenges:
The severity varies continuously

Imaging conditions, the temperature, snow,
m9isture, vary and affect backscattering

A B 'TC D M [: Tomppo, E.; Antropov, O.; Praks, J. Boreal Forest Snow Damage Mapping

Aalto University Using Multi-Temporal Sentinel-1 Data. Remote Sens. 2019, 11, 384.
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Snow damage mapping: Study area, SAR and reference data @esa

List of Sentinel-1 scenes
Image Date Mode Polarization
1 12 November 2017 w VV,VH
2 24 November 2017 w VV,VH
3 6 December 2017 w VvV, VH
4 18 December 2017 w VV,VH
L) 30 December 2017 w VV,VH
6 11 January 2018 w VV,VH
7 23 January 2018 w VV,VH
8 4 February 2018 w VV,VH
9 16 February 2018 w VV,VH
10 28 February 2018 w VvV, VH
31| 12 March 2018 w VV,VH
12 24 March 2018 w VV,VH

Reference data

Sanitary cutting reports were available from the
Finnish Forest Centre (Metsdkeskus, 2018), along with
MS-NFI data from Natural Resources Institute Finland
(Luke, 2018 for sampling non-damaged stands.

Training and testing dataset: a sample of 929 damaged
forest stands and a sample of intact forest stands.

i "k :

14 km x 7 km, images: ©ESA

Multitemporal composite of Sentinel-1 images (green-VH,
red-VV). Red polygons denote sanitary cutting reports
from Forest Centre (Metsékeskus,2018).
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Snow-damaged forest mapping: overall approach

Sentinel-1
imagery

SNAP image
preprocessing

Accuracy
assessment

multitemporal
Sentinel-1
stack

Feature
calculation

produced

classification

feature set o
model training

trained
model

Model testing /

mapping

training
data

reference
data

testing
data
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Snow-damaged forest mapping: SAR features and methods @esa

Classification approaches:
» Logistic regression analysis for binary data (LR),
« an improved k-NN method (ik-NN) for categorical variables

e support vector machine (SVM)

From the pixel level intensities (If‘,pq), these backscatter features were calculated for each stand, s,
for both polarizations pg and for each image, k, as follows:

(a) averages,

E?jfs IkrF’q

10log,, I¥77 = 101ogy, %k =1,.,12, pq € {VV,VH},

where 1; is the number of the pixels in stand s,

(b) standard deviations

s E—
Y (10logyo I#7 — 1010gy 1) / (ns — 1),k = 1,.., 12, pg € {VH,VV},
A

T=

(c) ratios,
s

1/ns Y 1Y /197 k=23, 4and k, = 5,6,7,8,9.
i=1

5,1 g1
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Snow-damaged forest mapping: Results

28.32°E 28.34°E 28.36°E 28.38°E 28.40°E

64.57°N 64.57°N

64.56°N

64.56°N

64.55°N 64.55°N

28.32°E 28.34°E 28.36°E 28.38°E 28.40°E

0.5 0 0.5 1 1.5 2 km

An example of snow-load damage map (brown) displayed on a Google Earth scene
©Google Earth. The area size is 4.8 km by 3.4 km.

Stand level accuracy metrics with separate validation data.

User Accuracy Producer Accuracy
Overall Accuracy

Damage Non-Damage Damage Non-Damage

Logistic regression

0.91 0.90 0.91 0.72 0.97
0.75 0.72 0.78 0.80 0.69
0.71 0.69 0.73 0.76 0.67

Tomppo, E.; Antropov, O.; Praks, J. Boreal Forest Show Damage Mapping Multi-Temporal Sentinel-1 Data. Remote Sens. 2019, 11, 384.

200

150

100

reference stem volume, m3ha

3

0 50 100 150 200
predicted stem volume, m3/ha
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Snow damage mapping: Results
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Results with SVM classification

) Overall accuracy up to ~91%

'1
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Windstorm damage @esa

Windstorms cause noticeable large area forest damages in Europe, including Scandinavia and Finland.

* In Finland, reported forest cuttings due to damage were over 30,000 ha in Northern Finland in 2014,
and more than 6000 ha in Eastern Finland in July 2020.

'+ Rapid localization of the forest damages and removal of the fallen trees is the key for assessing the
losses, as well as avoiding further damage, caused, e.g., by insects.

___F A ; ":;...:, ._ e ", . | I_ 72

Tomppo et al., Detection of Forest Windstorm Damages with Multitemporal
SAR Data—A Case Study: Finland. Remote Sens. 2021, 13, 383.
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: nd polygons denote sanitary cutting reports 390000
27 t Centre (Metsakeskus,2018). N SRR
o Polarization: VV =
The 27 Sentinel-1 data mosaics from 2017 used and their acquisition dates. g b

\HQ Mosaic Date Mosaic Date Mosaic Date =1 vvdb
1 4 January 10 14 July 19 20 August & Value
2 16 January 1 15 July 20 1 September a9 High : -3
3 28 January 12 21 July 21 7 September a2
4 9 February 13 26 July 22 12 September o .
5 21 February 14 2 August 23 13 September h Low : -20
6 2 July 15 7 August 24 18 September
7 3 July 16 8 August 25 19 September 3
B8 8 July 17 14 August 26 24 September L, b [T B i P 1L
9 9 Jul 18 19 August 27 25 September il

z 5 .4 [ Damaged stands
Non-damaged stands
oW w0 w0 0

xm E A mmm,d area

The location of the study area in Southern Finland.

Reference data

Data were selected in collaboration with Finnish Forest
Centre (Metsékeskus), along with MS-NFI data from
Natural Resources Institute Finland (Luke) for sampling
non-damaged stands.

Number of damaged stands was 313 (195 were severely
damaged), non-damaged 664. The entire dataset was
split into training (3/4) and validation dataset (1/4).

Separate analysis was done for the entire dataset and for

stands with growing stock volume larger than 75 m3/ha - e A il

S10000
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Windstorm forest damage : additional data layer

oy T

L Volume (m*fha) &7
) - 0-50

g [ 50-100
g B 0 100-150
& e [ 150-200

MS-NFI based:
« mean diameter of the trees,
| o 1 s * mean height of the trees,
| (e iy 1§« mean age of the trees
e _tt t " " 1 e pasal area of trees

growing stock volume by PFT.

DEM-based: average elevation, slope and aspect
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Windstorm forest damage : classification methods

Classification approaches:

« the improved k-NN (ik-NN),

« Multinomial logistic regression (MLR)

e support vector machine classifier (SVM)

The observations units in the models were forest stand level
for each polarization p and for each image k:
(a) averages,
e o k:P
A |
10log,, I — 1010g,, L"i'”, k=1,..,

b

27,p € {VV,VH},

where #; is the number of the pixels on stand s;

(b) standard deviations

,-n 27, p € {VH,VV};

‘/E(Ik” 22/ (s — 1),k =

(c) intensity-ratios

1/n; E Sedh 3y

81 F

k] =1 26 and kz =2, ...,27.

Adaptive filtering |, A~

Pre-processing
-ortho-retification
-radiometric normalization
-terrain flattening
- reprojection

!

Ortorectified Sentinel-1 data

Segmentation

A

Calculation of segment
level features

Calculation of stand level features

/

Sentinel-1 features and other

Segment level damage data with
geo-referenced data

Stand level dam age data with

Sentinel-1 features and other ﬁ
geo- referenced data /

13
SVM, Selection of the Sentmel 1 feature Multinomial logistic
model and variable weights with genetic algorithm regression, model and
selection and other parameters for iK-NN variable selection
'y i l £y
\ v \
H
L v
Validation I«*

_%_.{

‘
|
:
:
-

v

Accu-
racy
criteria
met

The flowchart of the windstorm
detection methodology using
Sentinel-1 time series

Pmductlun

Damage probability for each
stand or segment and each
damage category

Predicted damage categurv
for each stand or segrnent in
raster and csv form

}

Error estimates, OA, UA, PA,
conf. int. of probabilities of the
predicted damage category by

stands or segments

Pl

Fmal damage maps and

area estimates
with uncertainty estimates
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Windstorm forest damage: Results

The overall accuracy ((OA), user’s accuracy (UA) and producer’s accuracy (PA) in the validation

data using support vector machine (SVM), improved k-NN method (ik-NN) and multinomial
logistic regression with four different Sentinel-1 datasets. The latest scene after the damage was from
20 August 2017, except for 27 scenes in which all Sentinel-1 scenes were used. Segmentation-based

results are indicated with ‘S”. A volume threshold of 75 m® /ha was used for the data. 09 | '
Method and the OA UA by Category PA by Category 0.8
Number of the Scenes 11 22 33 11 22 33 0.7 ;
SVM 8 scenes 0729 0778 0.618 0.400 0.892 0.438 0.250 z 06 | | mikNN
SVM 10 scenes 0720 0.754 0.562 0.500 0.917 0.375 0.125 b
5VM 17 scenes 0.759 0.795 0.610 0.667 0.901 0.510 0.250 % 05 | | @EMLR
5VM 19 scenes 0.771 0.805 0.619 0.750 0.913 0.531 0.250 g #SVM
SVM 27 scenes 0769  0.781 0.688 0.800 0.955 0.458 0.167 = 04
5VM 8 scenes, 5 0735  0.792 0.535 0.500 0.884 0.469 0.208 o
5VM 10 scenes, 5 0.755 (0.616 0.571 0.462 (.901 0.490 0.250 5 0.3
SVM 19 scenes, S 0.784 0.807 0.686 0.625 0.948 0.490 0.208 i _
SVM 27 scenes, S 0788 0832 0.683 0.500 0919 0.571 0.292 ' |
ik-NN 8 scenes 0700 0775 0415 0435 0871 0327 0263 5 ,
ik-NN 10 scenes 0.690 0.762 0.467 0.250 0.867 0.404 0.105 |
Tk-NN 17 scenes 0.703 0.781 0.432 0.434 0.867 (.365 0.263 0 | |
BeDU £ A0ERES D5l 0 026 Bl A8 0HE 05 148. 198 208 19, 79, 129, 139, 189, 199. 249, 259. Datein 2017
MLR 8 scenes 0703  0.742 0.435 0.583 0.917 0.208 0.292
MLR 10 scenes 0.712 0.763 0.464 0.533 0.904 0.271 0.333 The overall accuracy with three different methods, ik-NN, MLR and 5VM as a function of the acquisition date of
MLR 17 scenes 0.686 0.771 0.407 0.348 0.879 0.229 0.333

19 scenies 0.657 0.794 0.326 0.296 0.808 0.286 0.333 the latest Sentinel-1 scene. The scenes were used until the date in the horizontal axis.

! Damage, Z Severe damage, ? Slight damage.
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Windstorm forest damage: Results

» Support vector machine (SVM) gave the largest overall accuracies among the three methods tested, improved k-NN (ik-NN),
multiple logistic regression (MLR) and SVM.

» The proportion of correctly classified stands (OA) in a separate validation data was 79%,and 75% if only one Sentinel-1 scene
after the damage was used. The user’s accuracy(UA) for severe damages was 62%, and 75% for slight damages. The
producer ’s accuracies (PAs) were somewhat lower.

» The accuracy of 75% was achieved using only one Sentinel-1scene after the damage, here two days after the damage, in
addition to the data before the damage.

* Using segmentation-based calculation units only slightly increased the OA, implying that this approach may presume further
work. Most likely, not only SAR data, but also inventory and other auxiliary data should be used in the segmentation
methodology.

* The study indicates that the damages could be localized using only one Sentinel-1scene after the damage implying a time-lag
of potential satellite SAR-based assessment method would be just a few days after the damage.
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Windstorm forest damage
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VTT AutoChange approach
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Image source: ©ESA

Figure 6. Output of S2-Autochange
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AutoChange based monitoring of forest cover

AutoChange was tested:
» Forest cover change

» Forest harvesting

 Forest damages
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Produced forest cover maps
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AutoChange based monitoring of forest cover

Detecting changes in forest during “Uuno” storm in June 2020 using
AutoChange method and Sentinel-2 images in Kainuu in Finland

Size of the area is 1.6 km x 1.6 km

Sentinel-2 23.6.2020

L. Sirro, T. Hame, EU Forest Flux project, ongoing work
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Conclusions

* Time-series are better than bi-temporal approaches or single-image interpretation
» Also auxiliary datasets, un addition to EO measurements, can be used

» Feature selection is important to identify most useful explanatory variables

» Sensor parameters and data continuity need to be carefully factored into analysis
* Reliable reference data and sampling design are critical

* Produced map (forest variable or change-map) is not very useful without uncertainty information
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