Multi-baseline Polarimetric SAR Interferometry: Forest Applications

Irena Hajnsek

ETH Zurich Institute of Environmental Engineering Email: hajnsek@ifu.baug.ethz.ch Web: http://www.eo.ifu.ethz.ch/

German Aerospace Center Microwaves and Radar Institute Department: Radar Concepts Research Group: Pol-InSAR

- 31% of the world's land surface is forest: 56% tropical & sub-tropical, 11% temperate, 33% boreal
- 80% of the world's terrestrial biodiversity lives in forests
- 300 Million people live in forests, 1.6 Billion people depend on forest for their livelihoods
- 50% of the terrestrially bound carbon is stored in forest; 70% of the carbon in vegetation is in forests

www.globalforestwatch.org

Forest Disturbance (2001-2019)

Commodity Driven Deforestration, Shifting Agriculture, Forestry, Wildfire, Urbanisation Curtis er al. 2018

which have been harvested beyond the natural growth capacity. **Secondary Forests:** forests regenerating through a natural succession process after significant and/or total disturbance of the original forest. They show major difference in structure, species composition, and age profile compared to primary forests.

Climate change can modify role of vegetation

Europe 2003 drought:

30% decrease of productivity, forest transforms from C-sink 0.3 GtC to C-source: -0.5 GtC

(Cias et al. 2005, Nature)

Amazon 2005 and 2010 droughts:

forests transforms from C-sink 0.5 GtC to C-source -1.2 GtC

(Phillips et al. 2009, Science, Lewis et al. 2011, Nature)

Does vegetation act as a carbon sink also in the future ?

in der Helmholtz-Gemeinschaft

τ : Pulse duration (Slant) range resolution: $\delta_r = \frac{c\tau}{2} = \frac{c}{2W}$

W: pulse (i.e. system) bandwidth

in der Helmholtz-Gemeinschaft

F-SAR C-band HV Image

0.200

(Single Look Resolution 40 x 60cm (az x rg), 4x1 Looks)

State State

THE NEW TOTAL STREET

Kaufbeuren, Germany F-SAR C-band HV 0.40x0.60m (4looks) resolution (300MHz)

Amazon Deforest Watch (Santarem) ALOS PalSAR

2007/6/13 2007/9/13

80Km

Lat : S 2°34' Lon : W 54°45'

Earth Observation and Remote Sensing

hajnsek@ifu.baug.ethz.ch - 17

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

InSAR Coherence

••• is a measure of interferogram quality:

Standard Deviation of the InSAR Phase φ:

$$\sigma_{\varphi} = \sqrt{\int_{-\pi}^{\pi} \varphi^2 p df(\varphi) \cdot d\varphi}$$

depends on ► the underlying coherence &► the number of looks N.

An increase in decorrelation (= loss in coherence) is associated with an increase in the phase variance;

Increased phase variance leads to increased height errors.

where:
$$pdf(\phi, N) = \frac{\Gamma(N + 1/2)(1 - |\gamma|^2)^2\beta}{2\sqrt{\pi}\Gamma(N)(1 - \beta^2)^{N+1/2}} + \frac{(1 - |\gamma|^2)^N}{2\pi}F(N, 1; 1/2; \beta^2)$$

F is a Gauss hypergeometric function and $\beta = |\gamma| \cos(\varphi - \overline{\varphi})$

N is the number of Looks

Interferometric Phase Images

Absolute Phase

Coherence=1.0

Looks=1

Coherence=0.4

Looks=1

Coherence=0.2

Coherence=0.8

Looks=1

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ce=0.6 Looks=1 Earth Observation and Remote Sensing

Why is Interferometry important for Volume Scatterers?

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Vertical Reflectivity Function f(z)

InSAR Volume Coherence $|\tilde{\gamma}_{Vol}(k_z)|$

Amplitude Image

Amplitude Image HH

Interferometric Coherence: Volume Decorrelation

Spatial Baseline 3m

Sweden

Radar Backscatter

Sweden

Forest Height

Sweden

Radar Backscatter

Test Site: Krycklan, Sweden

InSAR Coherence

Sweden

Forest Height

Traunstein Test Site

Traunstein Test Site

Pol-InSAR Height (H100) Estimates / L-band / Traunstein, Germany ΔH Classes: [-10,-5],[-5,-2],[-2,2],[2,5],[5,10]

Airborne Lidar Height (H100) Estimates / L-band / Traunstein, Germany

INDREX-II: Mawas Test Site

Tropical Forest Height from Pol-InSAR

24.12.2011

13.12.2011

• HoA ≈ 30 m - 80 m

•

•

•

Forest Height from TD-X / GEDI Data Fusion

TD-X Backscatter & GEDI Tracks

Forest Height estimation from the fusion of continous TDX InSAR data and discrete GEDI meassurements

Forest Height Map Gabon: 200 TanDEM-X Scenes + 35K GEDI Footprints

A State

Polarimetric radar tomography

Temporal variations at L-band (Capon)

Forest Structure Characterisation

Helmholtz Alliance: Remote Sensing and Earth System Dynamics

► Old forest, 500 years old

Old forest, 10 years after a fire event

► Old forest, 200 years after a fire event

Forest Structure Classification (25x25 m): Traunstein, Germany, 2008 / 2012

Forest Structure Classification (25x25 m): Traunstein, Germany, 2008 / 2012

We do not know how to combine multifrequency measurements in a model framework !

We do not know how to combine measurements at different spatial (temporal) scales !

biomass - ESA's 7th Earth Explorer Mission

2005 EE7 Call 2006 BIOMASS Proposal Submission 2007 Phase 0 (6 Mission Proposals) **2009 User Consultation Meeting Lisbon** 2010 Phase A (3 Mission Proposals) **2013 User Consultation Meeting Graz** 2013 Phase B (BIOMASS Only) 2016 Phase C+D **2023 Launch (Third Quarter)** 2023-2028 Operation

- Single satellite, operated in a polar sunsynchronous orbit
- Full polarimetric P-band (435 MHz, λ=69cm) SAR (Synthetic Aperture Radar) with 6 MHz bandwidth
- ✓ Two mission phases: <u>Tomography</u> (year 1), <u>Interferometry</u> (year 2-5)
- Multi-repeat pass interferometry (3 passes in nominal operations) with a <u>3 days repeat cycle</u>
- ✓ Global coverage in 7.5 months (228 days) on both asc. and des. passes

5 years lifetime

BIOMASS Mission Products

Level 2 Product	Definition	Information Requirements
Forest biomass	Above-ground biomass	• 200 m resolution
	expressed in t ha ⁻¹ .	• RMSE of 20% or 10 t ha ⁻¹ for biomass < 50 t ha ⁻¹
Forest height	Upper canopy height defined	• 200 m resolution
	according to the H100 standard	• RMSE better than 30% for trees higher than 10 m
Severe	Map product showing areas of	• 50 m resolution
disturbance	forest clearance	detection at a specified level of significance

- 1 near-global map of biomass and height from tomography in the first 14 mission months;
- updated biomass and height maps from polarimetry and interferometry every 7.5 months for the rest of the 5-year mission;
- annual maps of deforestation.

BIOMASS Mission Algorithm & Analysis Platform (MAAP)

Virtual research environment:

- Ease of data access and sharing
 - Remote sensing data from ESA science missions (and complementary/similar missions)
 - Ground data from ESA campaigns (field data and Cal/Val)
- Allow data processing (product generation)
- Allow joint code / algorithm development (Product Algorithm Laboratory), addressing intellectual property rights issues
- ✓ Enable interoperability of data/code/algorithms
- Support transparency in research, development and validation

Ease information sharing and networking

Multi-baseline Polarimetric SAR Interferometry: Forest Applications