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Unique Characteristics of Microwave Remote Sensing

• Independent of Weather Conditions: Penetrate clouds, rain, (smoke);

• (Lower Frequencies) Penetrate into / through a wide class of natural

cover types as: Sand / Ice / Vegetation;

• Sensitive to objects of dimensions from cm to m: (Complementary to

Optical and IR remote sensing);

• Very accurate (differential) distance measurements (employing  

interferometric techniques); 

• (Active) Microwave systems are able to operate day and night. 
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Global Annual Mean Cloud Cover (2007-2009)

From MERIS and AATSR on ENVISAT
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Folie 7
L-band Pauli RGB Image 

Test site: Dornstetten, Germany

Penetration into Vegetation

Vertical Reflectivity Profile (HH)

Vertical Reflectivity Profile (Pauli)
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Folie 8
E-SAR / Test Site: Glacier Austfonna, Svalbard 

Surface

Bedrock

~300m

Penetration into Ice
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L-band HH P-band HH

Delineated crowns

Injune, QL, Australia
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1992-2002 West-East Mean Velocity

Napoli, Italy ERS 1/2 
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In the Wilkins Ice Shelf an area of about 160 km²

collapsed during the Antarctic winter 2008.

This animation, comprised of images acquired by

Envisat’s Advanced Synthetic Aperture Radar (ASAR)

between 30 May and 9 June 2008, highlights the rapidly

windling strip of ice that is protecting thousands of

kilometres of the ice shelf from further break-up.

This was the first ever-documented episode to occur in

winter.

© ESA ENVISAT

30-5-2008
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SAR Remote Sensing and Global Societal Challenges

0 cm/day

85 cm/day

Deforestation, Brasilien
Glacier Movement & 

Ice Melting, Switzerland Copper Mine (DEM), Chile Subsidence, Mexico

Vulcano Monitoring, IslandUrban Planing, Istanbul Traffic monitoring, Prien 
Flooding, Deggendorf, 

Germany

Climate Change Environment Resources Sustainable Development

DisasterMobility HazardsMegacities
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Basic Radar Operation Block Diagram

Receiver \

Antenna

Circulator

Data 

Recording

Transmitter

• Transmitter: generates a high power pulse;

• Circulator (Switch): switches the transmitted pulse to the    

antenna, & the returned echoes to the receiver;

• Antenna directs the transmitted pulse towards the scene; 

• Receiver amplifies the received signal and converts to 

base band.

Radar Pulse
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Basic Radar Operation Block Diagram

Receiver \

Antenna

Circulator

Data 

Recording

Transmitter

Radar Pulse

1 The transmitted pulse interacts with the scene / scatterer;

2 Some of the energy of the incident radar pulse is scattered 

back towards the radar

3 and is measured by the radar.  It is known as the scatterer’s

(complex) radar reflectivity (radar brightness).

4  Normalized radar cross-section 

(backscattering coefficient):

E: Energy received from (backscattered by)    

the scatterer

EISO: Energy received from (backscattered by) 

an isotropic scatterer

o [dB] = 10. log10 (------)
E

EISO

o > 0 o < 0o = 0

• Transmitter: generates a high power pulse;

• Circulator (Switch): switches the transmitted pulse to the    

antenna, & the returned echoes to the receiver;

• Antenna directs the transmitted pulse towards the scene; 

• Receiver amplifies the received signal and converts to 

base band.
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Pulsed radar system 2-D Imaging

2-D SAR Image
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Levels of Radar backscatter Typical scenario

Very high backscatter (above -5 dB) Man-Made objects (urban)

Terrain slopes towards radar

Very rough surface

Radar looking very steep 

High backscatter (-10 dB to 0 dB) Rough surface

Dense vegetation (forest)

Moderate backscatter (-20 to -10 dB) Medium level of vegetation 

Agricultural crops 

Moderately rough surfaces

Low backscatter (below -20 dB) Smooth surface 

Calm water

Road 

Very dry terrain (sand)

Backscattering Coefficient o 
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Folie 27

F-SAR (DLR), Kaufbeuren, X-Band
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Kaufbeuren, Germany

F-SAR C-band HV
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2007/9/13

2007/6/13

Amazon Deforest Watch (Santarem) ALOS PalSAR

Lat  : S    2°34’

Lon : W 54°45’

80Km
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SAR Interferometry (InSAR)
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The Phase-to-Height Sensitivity increases with increasing the spatial baseline (i.e. Δθ or B );
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SIR-C  / Test Site: Mt. Etna, Italy

X-band

Amplitude Images   

C-band

L-band

24 Hours Temporal Baseline
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X-band

C-band

L-band

SIR-C  / Test Site: Mt. Etna, Italy

Phase Images
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X-band

C-band

L-band

SIR-C  / Test Site: Mt. Etna, Italy

Phase Images
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Mt. Etna
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Interferometric SAR Implementations: Single vs. Repeat-Pass

Single-Pass or Simultaneous Interferometry

The two acquisitions are performed simultaneously

(Zero temporal baseline)

Repeat-Pass Interferometry

The two acquisitions are performed at different times

(Non-Zero temporal baseline)

Single Platform 

with two antennas

Two Platforms

flying in (close) formation

Single Platform 

in repeated orbit(s) 

or

Two Platforms

flying on the same orbit 
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1 km
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1 km
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Height loss of Aletschgletscher 2011 - 2018

08.11.2015

• Agreement with results of climate scenarios: 
DEG2:        -2.1 m / year (political aim)
ENSmed:   -3.6 m / year (business as usual)

TanDEM-X  vs.  SwissAlti3D (2009)

L. Leinss
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Evros River, Greece-Turkey 
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Evros River, Greece-Turkey 

Paddy Rice Monitoring by Means of DEM’s
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Paddy Rice Monitoring by Means of DEM’s

C. Rossi, and E. Erten, “Paddy rice monitoring using TanDEM-X”, IEEE Transaction on Geoscience and Remote Sensing, 2015.
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Folie 49

F-SAR (DLR), Kaufbeuren, X-Band

Radar Backscattering Image @ X-Band



Folie 50

SAR Polarimetry (R:HH+VV,G:2*HV, B:HH-VV)

F-SAR (DLR), Kaufbeuren, X-Band, fully polarimetric



For all vector waves polarisation refers 

to the behaviour of the wave field vectors in time observed at a fixed point in space. 

(AZZAM & BASHARA)

Elliptical Polarisation Linear Polarisation

What is polarisation ?
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… also known as the Jones Matrix in the bistatic and Sinclair Matrix in the monostatic case  

Complex Scattering Amplitudes:

=f( Frequency, Scattering, Geometry )
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The  bistatic scattering matrix contains seven independent parameters: 4 Amplitudes & 3 Phases  

The monostatic scattering matrix contains five independent parameters: 3 Amplitudes & 2 Phases  



Scattering Vector
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 … any complete set of four matrices leaving the norm of      invariant4
k


Lexicographic & Pauli Scattering Vectors
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Lexicographic Scattering Vector:

Pauli Scattering Vector:

Lexicographic Matrix Set:

Pauli Matrices Set:

Scattering Vector:

Advantage: Directly related to the system measurable

Advantage: Closer related to physical properties of the scatterer
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Partial Scatterers

Deterministic Scatterers Partial Scatterers

Completely described by [S] Cannot be described by a single [S]

• Change the polarisation state of the wave • Change the polarisation state of the wave 

• Do not change the degree of polarisation  and also change the degree of 
polarisation  

Scatterers with Space or Time VariabilityPoint Scatterers 

Monochromatic
Incident Wave 

Monochromatic
Scattered Wave 

Depolarisation
described by second order statistics 
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SAR Remote Sensing and Global Societal Challenges
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